

The Web
Resource Space Model

Web Information Systems Engineering

and Internet Technologies

Book Series

Series Editor: Yanchun Zhang, Victoria University, Australia

Editorial Board:
Robin Chen, AT&T
Umeshwar Dayal, HP
Arun Iyengar, IBM
Keith Jeffery, Rutherford Appleton Lab
Xiaohua Jia, City University of Hong Kong
Yahiko Kambayashi† Kyoto University
Masaru Kitsuregawa, Tokyo University
Qing Li, City University of Hong Kong
Philip Yu, IBM
Hongjun Lu, HKUST
John Mylopoulos, University of Toronto
Erich Neuhold, IPSI
Tamer Ozsu, Waterloo University
Maria Orlowska, DSTC
Gultekin Ozsoyoglu, Case Western Reserve University
Michael Papazoglou, Tilburg University
Marek Rusinkiewicz, Telcordia Technology
Stefano Spaccapietra, EPFL
Vijay Varadharajan, Macquarie University
Marianne Winslett, University of Illinois at Urbana-Champaign
Xiaofang Zhou, University of Queensland

Other Books in the Series:

Semistructured Database Design by Tok Wang Ling, Mong Li Lee,
Gillian Dobbie ISBN 0-378-23567-1
Web Content Delivery edited by Xueyan Tang, Jianliang Xu and
Samuel T. Chanson ISBN 978-0-387-24356-6
Web Information Extraction and Integration by Marek Kowalkiewicz,
Maria E. Orlowska, Tomasz Kaczmarek and Witold Abramowicz
ISBN 978-0-387-72769-1 FORTHCOMING

The Web
Resource Space Model

Hai Zhuge
Chinese Academy of Sciences

Hai Zhuge
Key Lab of Intelligent Information Processing
Institute of Computing Technology
Chinese Academy of Sciences
P.O. Box 2704-28
No. 6 Science South Road
Zhong Guan Cun, Beijing, China 100080
zhuge@ict.ac.cn

Library of Congress Control Number: 2007935313

ISBN-13: 978-0-387-72771-4 e-ISBN-13: 978-0-387-72772-1

Printed on acid-free paper.

© 2008 Springer Science+Business Media, LLC

9 8 7 6 5 4 3 2 1

springer.com

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Contents

Contents ..v

Preface ...xi

Chapter 1 Resource Space Model Methodology1
1.1 Origin of the Resource Space Model..1
1.2 Basis of the Resource Space Model..7

1.2.1 Definitions and Characteristics..7
1.2.2 Resource Space Definition Language......................................12
1.2.3 Resource Space Manipulation Operations...............................13
1.2.4 Resource Space Modification..15
1.2.5 View Definition ...16
1.2.6 Query Language ..17
1.2.7 Visualized Resource Locating ...18

1.3.1 Management of Web Pages ...20
1.3.2 Managing Multi-layer Tables ..21
1.3.3 Management of Photos ..23
1.3.4 Geographical Resource Space ...25
1.3.5 Multi-dimensional ACM Computing Classification System...26
1.3.6 Management of Bio-information ...27
1.3.7 Media Content Space...28
1.3.8 Automatically Add New Resources to the Resource Space28

1.4 Design Method ...31
1.4.1 Resource Analysis ...31
1.4.2 Top-down Resource Partition..32
1.4.3 From Low Dimension to High Dimension33
1.4.4 Abstraction and Analogy in Designing Resource Space37

1.5 Use Resource Space to Manage Relational Tables.........................39
1.6 The Semantic Link Network...41

1.8 Questions and Answers ..48
1.9 Summary...50

1.3 Application Scenarios of the Resource Space Model20

1.7 Comparison between RSM and RDBM ...45

vi Contents

Chapter 2 A Semantic Overlay Integrating Normalization with
Autonomy ... 53

2.1 The Basic Idea .. 53
2.2 Integrating Resource Space Model with Semantic Link Network..56
2.3 Relationship between RSM and SLN... 60

2.3.1 Transformation from Semantic Link Network to Resource
Space Model ... 60
2.3.2 Transformation from Resource Space to Semantic Link
Network and Correlations... 63

2.4.2 The Core Component of Union View: Resource Class

Chapter 3 Expressiveness of Query Languages for Resource Space
Model .. 83

3.1 The Problem ... 83
3.2 Completeness of Query Languages on Resource Spaces 84

3.3.1 Design of Query Operations .. 87
3.3.2 Verification of Completeness of Operations 89

3.4 Expressiveness of Query Languages .. 92

3.4.2 Some Characteristics of Expressiveness.................................. 94

3.6 Summary... 97

Chapter 4 Algebra and Calculus of the Resource Space Model 99
4.1 Basic Idea ... 99
4.2 Resource Space Algebra ... 100

4.2.1 Definitions of Operations .. 100
4.2.2 Relationships among Operations ... 105

4.3 Resource Space Calculus.. 107

4.3.2 From Resource Space Algebra to Resource Space Calculus.110

2.4.4 Operations on the Union View of Resource Space and

2.3.3 Topological Properties... 65
2.4 Union View of Resource Space and Semantic Link Network........ 68

2.4.1 The Framework ... 68

Hierarchy .. 71
2.4.3 Operations on Resource Class Hierarchy 74

Semantic Link Network.. 77
2.5 Discussion and Summary ... 79

3.2.1 Basic Idea .. 84
3.2.2 Definition of Completeness of Query Operations 85

3.3 Complete set of Operations .. 86

3.4.1 Comparison between Expressiveness...................................... 92

3.5 Comparison and Analysis ... 94

4.3.1 Definition... 107

Contents vii

4.3.3 From Resource Space Calculus to Resource Space Algebra.111
4.3.4 Transformation from Relational Model to Resource Space ..115

4.4 Summary... 116

Chapter 5 Searching Complexity of Resource Space Model.............. 117

5.1.1 On Computation Complexity...117
5.1 Basic Concepts and Formulas...117

5.1.2 Searching Complexity and Formulas120
5.2 Basic Assumptions ...121
5.3 Distribution of Coordinates on Axes ..123

5.3.2 The Worst Distribution of Coordinates125
5.4 The Changing of Space Dimension ..129

5.3.1 Best Distribution of Coordinates ...123

5.4.2 Value of Critical Dimension..131
5.5 Summary... 132

Chapter 6 Resource Space Model Storage...135
6.1 Current Approaches to Storing Resource Space...........................135
6.2 Problem Definition ...137
6.3 System Architecture ...138
6.4 RSM Storage Mechanism...140
6.5 RSM Schema Tree..141
6.6 C-tree .. 148

6.6.1 Resource Operations..148
6.6.2 Minimum Bounding Rectangle ...152
6.6.3 On INSERT_POLICY...154
6.6.4 On SPLIT_POLICY ..155
6.6.5 Disk management ..156

6.7 Summary... 157

Chapter 7 Structured Peer-to-Peer Resource Space159
7.1 Basic Idea ...159

7.1.1 The Problem .. 159
7.1.2 A Brief Introduction to CAN...160
7.1.3 Basic Approach ...161

7.2 The System Design... 162
7.2.1 The Basis ... 162
7.2.2 Node State ... 163
7.2.3 Routing .. 164
7.2.4 Node Join...167
7.2.5 Node Departure ...170

5.4.1 Relationship between Dimension and Searching Complexity . 129

viii Contents

7.3 Improvement... 171
7.3.1 Routing Performance... 172
7.3.2 Node Failure Recovery.. 174
7.3.3 Coordinates in Tree Structure.. 175

7.4 Summary... 178

Chapter 8 Unstructured Peer-to-Peer Resource Space...................... 179
8.1 Unstructured Peer-to-Peer .. 179
8.2 Incorporating Resource Space with Unstructured Peer-to-Peer ... 180

8.2.1 Peer-to-Peer in e-Science... 180
8.2.2 Integrating Resource Space with Gossip 182

8.3 The Construction Mechanism... 184
8.3.1 Resource Index Issuing Process .. 186
8.3.2 Peer Join Process ... 186
8.3.3 Peer Departure Process.. 188
8.3.4 Query Processing Process.. 189

8.4 Performance Analysis... 190
8.4.1 Reliability .. 190
8.4.2 Hop Count Expectation ... 191

8.5 Experimental Evaluation .. 192
8.5.1 Experiments in Random Networks.. 192
8.5.2 Experiments in Random Power-law Networks...................... 193

8.6 Architecture of a RSM-based Gossip Network 200
8.7 Summary... 201

Chapter 9 Probabilistic Resource Space Model.................................. 203
9.1 Basic Concepts ... 203
9.2 Normal Forms of Probabilistic Resource Space 206

9.2.1 The First Normal Form and Second Normal Form 206
9.2.2 The Third Normal Form .. 207

9.3 Operations of Probabilistic Resource Space................................. 209
9.3.1 Point Query.. 209
9.3.2 Resource Query ... 210
9.3.3 Resource Modification .. 211
9.3.4 Operations on Probabilistic Resource Space 213

9.4 Integrity Constraints under Probability .. 214
9.4.1 Key in Probabilistic Resource Space Model 214

9.5 Relevant Works .. 219
9.6 Summary... 220

References... 221

9.4.2 Integrity Constraints in Probabilistic Resource Space Model 216

Contents ix

Index.. 231

Preface

Birds of a feather flock together. Web resources of a category work closely
for efficiency.

Classification is a method of efficiently managing various resources. It
is also a basic method for human beings to know the real world and syn-
thesize experience.

A Web Resource Space Model (in simple RSM) is a semantic data
model for specifying, storing, managing and locating Web resources by
appropriately classifying the contents of resources. It enables users or ap-
plications to operate resources by the SQL-like query language.

A Web resource space is a multi-dimensional classification space where
dimensions are discrete. Its intrinsic characteristics are worth studying as
it is not an ordinary distance space. A resource space can be normalized to
increase the correctness of resource management by setting constraints on
dimensions.

Aiming at a Web semantic data model with characteristics of normaliza-
tion and autonomy, this book develops the RSM systematically in method-
ology, model and theory. It concerns the following contents:

1. The general methodology of the RSM, which includes the origin, fun-
damental concepts, characteristics and the development method. It
helps understand the RSM and design resource spaces for applica-
tions.

2. The relationship between the Resource Space Model and the Semantic
Link Network. The integration of the two models forms a richer se-
mantic data model to support advanced distributed applications.

3. The completeness and necessity theory for query operations of the
Resource Space Model.

4. The algebra and calculus theory for query operations of the Resource
Space Model. The query capability and expressive power of the Re-
source Space Model are studied from two perspectives: resource
space algebra and resource space calculus.

xii Preface

5. The complexity of searching the resource space. We intend to unveil
the relationship between the searching efficiency and the number of
dimensions as well as the relationship between the searching effi-
ciency and the distribution of coordinates.

6. The physical storage mechanism of the resource space. Its multi-
dimensional and discrete characteristic is different from the relational
database index (one dimensional) and previous multidimensional in-
dex (sequential numerical dimensions).

7. The P2P-based decentralized resource space. It is an approach to
enabling the Resource Space Model to synergy normalization with
autonomy. A structured P2P resource space solution and an unstruc-
tured P2P resource space solution are studied.

8. The probabilistic Resource Space Model, which enables users or ap-
plications to store and retrieve resources uncertainly. It is a more gen-
eral Resource Space Model.

I would like to take this opportunity to thank my students Erlin Yao,
Yunpeng Xing, Xiang Li, Chao He and Liang Feng who make important
contribution to this work. Thanks also go to all team members of the China
Knowledge Grid Research Group for their help and cooperation.

Research work was financially supported by the National Basic Re-
search Program of China (2003CB317000), the EU 6th Framework Project
GREDIA (IST-FP6-034363), and the International Cooperation Program
of the Ministry of Science and Technology of China (2006DFA11970).

The Web resource space is a part of the resource space we live in. The
RSM is a promising model for effective management of versatile re-
sources. Integrating the RSM with the Semantic Link Network, the data-
base models and the Web ontology mechanisms could form a powerful
semantic platform for the future interconnection environment.

Hai Zhuge
August 9, 2007

Chapter 1 Resource Space Model Methodology

Classification is not only an approach to efficiently managing resources
but also a basic method for human to know the real world.

The Web Resource Space Model realizes birds of a feather flock together
in the digital interconnection environment. It specifies and manages vari-
ous Web resources by normalizing classification on contents of resources.

1.1 Origin of the Resource Space Model

Files are expanding in our daily-use PCs or laptops due to easier download
from websites and email attachments. Management of these accumulating
files is troublesome if we arbitrarily save them. For example, saving files
in the desktop of Windows seems convenient, but this will cause ineffi-
cient retrieval of files and slow down the speed of machine in the long run.
Appropriately naming folders to contain various files is a way to efficient
file management and retrieval. Inappropriately naming will cause trouble
in retrieval of files due to synonym or poor meaning.

Goods in supermarkets are arranged by classification. Goods are placed
and updated according to the commonsense of the classification shared be-
tween customers and sellers. Chain supermarkets often arrange goods in a
uniform style and place good categories in the same order so that custom-
ers can quickly reach their targets. This order is an experience for custom-
ers to raise the efficiency in selecting goods by going directly to the inter-
ested category or region. We can also find that some closely relevant
goods are arranged in neighborhood. This neighbor information also helps
customers to select goods. These strategies bring efficiency and conven-
ience for sellers to manage goods and for customers to select goods.
Biologists classify organisms into categories by judging degrees of appar-
ent similarity and difference. On discovering an unknown organism, sci-
entists begin their classification by looking for anatomical features that
have the same function as those found on other species, and then determine

2 Chapter 1 Resource Space Model Methodology

whether or not the similarities are due to an independent evolution or to
descent from a common ancestor. If the latter is the case, then the two
species could be classified into the same category.

Children start to learn concepts by classifying real-world objects into
categories and by generalizing and specializing categories via instances.
So classification is not only an approach to efficiently managing resources
but also a basic method for human to know the real world.

A (Web) Resource Space Model (in simple RSM) is a semantic data
model for specifying, storing, managing and locating contents of (Web) re-
sources by appropriate classification on the contents of resources.

The notion of the Web resource space was initiated in 2002 as a multi-
dimensional knowledge space (Zhuge, 2002). Its basic model was pro-
posed in 2004 (Zhuge, 2004a-d).

A resource space is a multi-dimensional classification space where di-
mensions (axes) are discrete so it is different from ordinary distance space.
Its intrinsic characteristics are worth studying.

A resource space can be normalized to ensure the correctness of manag-
ing resources by setting constraints on axes.

The Resource Space Model methodology is a study of the basic method
for designing resource spaces and helping the development of its applica-
tions.

Data model and algorithm are the core of software systems.

File system is the first milestone towards effective computing resource
management. It is a method for storing, managing and retrieving resources
in form of files by establishing mapping between a directory indexing
structure and a storage device. The directory indexing structure can keep
track of the files and path syntax required to access them. It defines the
way files are named as well as the maximum size of a file or volume. A
file system is a component of most operating systems. IT professionals
have used various indexing techniques to raise the efficiency of managing
data in files.

The file system can be regarded as a 1-dimensional resource space.

Database is another milestone towards effective resource management.
Most databases use file systems as the underlying mapping mechanism be-
tween the higher level indexes and the storage devices. Database theories
and systems have influenced the world for forty years (Bachman, 1969).
Especially, the Relational Database Model and systems have achieved a

1.1 Origin of the Resource Space Model 3

great success (Codd, 1970). The Relational Database Model uses rela-
tional tables to describe basic relations between data types. Its normal form
theory ensures the correctness of data operations.

Both the file system and the database system are invented at the age of
mainframe and centralized computing.

The World Wide Web is a huge decentralized file system. There is no
central control for adding, updating and removing Web pages. The man-
agement of the Web resources challenges traditional data models.

Object-oriented databases and object-relational databases extend the ap-
plication scope of the relational databases by borrowing the advantages of
the object-oriented methodologies and programming languages like inheri-
tance and encapsulation to model the real-world and they enable complex
objects to be effectively managed (Kim, 1990; Rumbaugh et al., 1991;
Mok, 2002). But, their limitations emerge in Web-based applications,
which require resources to be managed in an open, decentralized, plat-
form-irrelevant and content-based way.

In data warehousing and OLAP area, the multi-dimensional data model
was used. It is suitable for storing large-scale historical data. To support
decision-making based on large data sets, data mining techniques are nee-
ded to discover the rules in large data sets (Han and Kambr, 2000). But,
the read-only model is limited in ability to meet the needs of resource ma-
nagement in the Internet environment where resources are complex and
have to be frequently operated. Compared with the relational data model,
it is weak in theory on data management.

Fig. 1.1 depicts a file system on disk. The file system realizes the map-
ping from the directories and files of various type onto the disk space by
establishing the index on the linear disk space. Users or up-level applica-
tions can operate files according to their names and path regardless of their
physical storage.

Fig. 1.2 shows the keyword index on the World Wide Web. The Web is
actually a decentralized file system, which enables users to browse Web
pages by their URLs. Search engines establish indeces on Web pages dis-
tributed on the Web by collecting and classifying Web pages according to
keywords and then recommending Web pages sharing the same set of
keywords according to the page rank (S.Brin and L.Page,
www7.scu.edu.au,1998).

4 Chapter 1 Resource Space Model Methodology

Fig.1.1. The EXT2/3 file system.

1.1 Origin of the Resource Space Model 5

6 Chapter 1 Resource Space Model Methodology

Comparison of the file system on disk and the file system on the World
Wide Web implicates the evolution of file systems.

With the development of Web applications, effective management of the
contents of various resources on the Web becomes a challenge. The new
generation data model should be a semantic-rich model that is able to ma-
nage content rather than file name. But to precisely describe the content of
an individual resource is difficult and a formal description is not easy for
sharing among people of different communities. The Resource Space Mo-
del can reflect the content of resources by classification semantics.

People often use the classification method to manage various contents in
daily life. For example, researchers are organized into research groups ac-
cording to the research topics they are working on. Publishers classify
their products (books, journals and conference proceedings) into different
categories according to disciplines and contents.

A set of resources can be classified by different classification methods
as shown in the left hand of Fig. 1.3. Multiple classification methods con-
stitute a multi-dimensional semantic space over a set of resources as
shown in the right hand of Fig. 1.3, where each axis represents a kind of
classification method.

Fig. 1.3. Multiple classification methods over a set of resources constitute
a multi-dimensional classification space.

Y

X

Y

Z

Z
X

1.2 Basis of the Resource Space Model 7

The Resource Space Model is such a semantic space that manages in-
formation, knowledge and service resources. Information resources refer to
various types of electronic files that can be transmitted through the Inter-
net, and can be read or perceived directly or indirectly. Knowledge re-
sources include metadata, relation and strucuture as well as the abstract
concepts, axioms, rules and methods that can be represented in a certain
machine-understandable form. Knowledge can be generated from under-
standing the information resources or generalizing human experience.
Service resources refer to the reusable capability processes for performing
tasks, solving problems, or processing information or knowledge re-
sources.

A resource space can be presented in:

1. conceptual or logical aspect⎯ the definition of an n-dimensional re-
source space;

2. user view aspect⎯ a subspace of the whole resource space displayed
in user-understandable form;

3. representation aspect⎯ the cross-platform understandable definition
based on standard description languages like XML, RDF and OWL;
and,

4. storage aspect⎯ the physical storage of the resource space including
the storage of the space structure, relevant index and resource entities.

The characteristics of the Resource Space Model require a specific
method to help design resource spaces. Before presenting the design
method, we first introduce the basic notion and components of the Re-
source Space Model.

1.2 Basis of the Resource Space Model

1.2.1 Definitions and Characteristics

The semantic basis of the Resource Space Model is name space, basic da-
ta type, set and partition.

Concepts are labeled in the name space as consensus of a community,
while their semantics are determined by classification and use-case in four
worlds ⎯ the real world, the document world, the machine world and the
mental world (Zhuge et al, 2006). Some basic concepts in the name space

8 Chapter 1 Resource Space Model Methodology

do not need to be explained. They can be used to define other concepts. A
set of concepts can represent a certain semantics. Classifications on con-
cepts form concept hierarchies.

The basic semantic elements of the Resource Space Model are resource,
resource space, axis and coordinate.

A resource in the machine world has name, type and content. Concepts
are basic elements of the composing content. For example, a Web page has
a URL, and its content can be represented by a set of concepts.

A Resource Space is a multi-dimensional classification space. It consists
of a name and a set of axes, denoted as RS(X1, X2, …, Xn). Each axis Xi re-
presents a classification method. Xi is partitioned by a set of coordinates
denoted as Xi = <Ci1, Ci2, …, Cim>.

A point in the space, determined by one coordinate at every axis, repre-
sents a set of resources of the same category.

An axis can be regarded as a 1-dimensional resource space.

A coordinate C represents a set of resources, denoted as R(C). Re-
sources represented by axis Xi are the union of all the resources repre-
sented by its coordinate: R(Xi)= R(Ci1)∪R(Ci2) ∪…∪R(Cin). The semantics
of a coordinate is represented by name, basic datatype, a set of concepts, or
a coordinate tree (low-level coordinates finely classify their common an-
cestor). The semantics of a coordinate is regulated by the semantics of its
axis.

A coordinate C is called independent from another coordinate C’ if there
is no intersection between R(C) and R(C’). Using existing taxonomy and
commonsense as the classification method is a way to establish concensus
between designers and users.

The resource space, axis, coordinate, and point are sets in nature.

A coordinate regulates a set of points. An axis regulates a set of coordi-
nates. An axis name represents higher classification level than its coordi-
nates. A resource space regulates a set of axes and the refined classifica-
tion relationship. A resource is determined by locating the point it belongs
to and by selecting from the resource set according to its name and content
description.

Two axes can be regarded as equivalent if their names are the same in
semantics and the names of all the corresponding coordinates are the same
in semantics.

1.2 Basis of the Resource Space Model 9

 The following are two operations on axis:

1. If two axes X1 = <C11, C12, …, C1n> and X2 = <C21, C22, …, C2m> have
the same axis name but have different coordinates, then they can be
merged into one: X= X1 ∪ X2 =<C11, C12, …, C1n , C21, C22, …, C2m >.
In this case, the name of X represents X1 and X2.

2. An axis X can be split into two axes X’ and X″ by dividing the coordi-
nate set of X into two: the coordinate set of X’ and the coordinate set
of X″, such that X= X’∪ X″. If the two axes need to be merged for
the future use, the names of X’ and X″ should be the same in seman-
tics.

The semantics of axis and coordinate can be formally defined or in-
formally defined. For example, the semantics of a coordnate can be de-
fined by a set of concepts, which regulate the semantics of the resources it
may contain. The above definitions enable a resource space to represent
any form of resources.

If we use a set of domain concepts KC to describe a coordinate C, and
the resources contained by C share common concept set KR, then we could
find a mapping between KC and KR such that corresponding concepts are
the same or share a common ancestor. This mapping is useful in automati-
cally classifying resources.

Let X=(C1, C2, …, Cn) be an axis and Ci' be a coordinate at another axis
X’, we say that X finely classifies Ci' (denoted as Ci'/X) if and only if:

1. (R(Ck)∩R(Ci')) ∩(R(Cp)∩R(Ci')) = NULL (k≠p, and k, p∈[1, n]); and,
2. R(C1)∩R(Ci')∪R(C2)∩R(Ci') ∪ … ∪R(Cn)∩R(Ci') =R(Ci') hold.

As the result of fine classification, R(C’) is partitioned into n
categories: R(Ci'/X) ={R(C1)∩R(Ci'), R(C2)∩R(Ci'), …, R(Cn)∩R(Ci')}.

For two axes X= (C1, C2, …, Cn) and X’ = (C1', C2', …, Cm'), we say that
X finely classifies X’ (denoted as X’/X) if and only if X finely classifies C1'
, C2' ,…, and Cm' respectively.

Two axes X and X’ are called orthogonal with each other (denoted as X
⊥ X’) if X finely classifies X’ and vice versa, i.e., both X’/X and X/X’ hold.

Establishing orthogonal relationship between relevant classifications
deepens people’s understanding on the real world.

The following three normal forms are for designing a good resource
space.

10 Chapter 1 Resource Space Model Methodology

1. A first-normal-form resource space is a resource space and there does
not exist name duplication (semantic overlap) between coordinates at
any axis.

2. A second-normal-form resource space is a first-normal-form, and for
any axis, any two coordinates are independent from each other.

3. A third-normal-form resource space is a second-normal-form and any
two axes of it are orthogonal with each other.

The following are four operations of the resource space:

1. Join operation. If two resource spaces RS1 and RS2 specify the same
type of resources and they have n (n≥1) common axes, then they can
be joined into one resource space RS such that RS, RS1 and RS2 share
these n common axes and |RS|=|RS1| + |RS2| − n, where |RS| represents
the number of dimensions of the RS. RS is called the join of RS1 and
RS2, denoted as RS1⋅RS2⇒RS.

2. Disjoin operation. A resource space RS can be disjoined into two re-
source spaces RS1 and RS2 (denoted as RS⇒RS1⋅RS2) that specify the
same type of resources as that of RS such that they have n
(1≤n≤min(|RS1|, |RS2|)) common axes and |RS| − n different axes, and
|RS|=|RS1| + |RS2| − n.

3. Merge operation. If two resource spaces RS1 and RS2 specify the
same type of resources and satisfy: (1) |RS1|=|RS2|=n; and, (2) they
have n−1 common axes, and there exist two different axes X1 and X2
satisfying the merge condition, then the two spaces can be merged
into one RS by retaining the n−1 common axes in the new space and
including a new axis X=X1∪X2. RS is called the merge of RS1 and
RS2, denoted as RS1∪RS2⇒RS, and |RS|= n. The second condition
can be extended as follows: they have n−k common axes (1≤k<n), and
there exists one-one mapping between the rest k axes of the two
spaces such that the merge condition can be satisfied, then the two
spaces can be merged into one RS by retaining the n−k common axes
in the new space and including k new axes, each of which is the union
of the corresponding axes.

4. Split operation. A resource space RS can be split into two resource
spaces RS1 and RS2 that store the same type of resources as that of RS
and have |RS| −1 common axes by splitting an axis X into two: X’ and
X″, such that X=X’∪X″. This split operation is denoted as

1.2 Basis of the Resource Space Model 11

RS⇒RS1∪RS2. (In contrast to the merge operation, this split opera-
tion can be extended to the case that RS1 and RS2 have |RS| − k com-
mon axes by splitting every of the k axes into two.)

Several strategies can be adopted to realize the join operation. One
strategy is that only those resources specified in both original resource
spaces are reserved in the new resource space. The join operation would
result in many empty nodes. Therefore, the join and merge operations are
usually used for generating views of existing resource spaces. If RS1 and
RS2 are 3NF, then RS is a 3NF according to the normal form theory of the
Resource Space Model.

The Resource Space Model is equipped with an SQL-like resource op-
eration language to support operations on resource space. The basic opera-
tions are introduced in The Knowledge Grid (Zhuge, 2004d).

Efficient resource management depends on the human behavior mode
of dealing with resources and the mode of storing resources in the resource
space. The degree of matching between the two modes determines the ef-
ficiency.

Fig.1.4 depicts the interaction between the human behavior and the re-
source space.

Storing resources in the right category with high probability leads to
better retrieval result. The query language bridges the mutual understand-
ing between the behavior modes and the resource storage. The semantic
mechanism like domain ontology helps explain the output resources and
the input on storage and query.

12 Chapter 1 Resource Space Model Methodology

Fig. 1.4. Interaction between the human behavior mode and the resource
storage mode.

1.2.2 Resource Space Definition Language

The Resource Space Definition Language RSDL defines the commands for
specifying and modifying resource spaces, in particular, the schemas for
resource spaces.

A resource space can be created by the following command, where RS
is the name of the resource space, Xi is the name of its axis, Cij is the coor-
dinate of Xi, and the URSL is the location of the resource space. The integ-
rity constraints set constraints on axes to ensure the correctness of opera-
tions.

CREATE SPACE RS (X1, X2, …, Xn) [AT URSL]
WHERE X1 = {C11, …, C1u }, …, Xn = {Cn1, …, Cnv}

<integrity constraint1>

Behavior
Mode

Storage
Feature

 Semantics
Domain Ontology

Resources

Inexact
Query

Store

Query
Language

Explain

 Algebra

Probability

RSM
/SLN

Retrieval

1.2 Basis of the Resource Space Model 13

……
<integrity constraintm>

The drop command is for deleting a resource space including all the
indices and schemas.

DROP RSPACE RS

The modify command is used on an existing resource space to add or
drop axes or coordinates. For example, an axis can be added to a resource
space by using the following command, where RS is the name of an exist-
ing resource space, axisi is the name of the axis to be added, and <Ci1, …,
Cij> is its coordinate list.

MODIFY SPACE RS
ADD AXIS Xi <Ci1, …, Cij>

The axes of a resource space can be listed by using the following
command, where RS is the name of an existing resource space.

USING RS LIST AXES

Similarly, the coordinates of a given axis in a resource space RS can be
listed by using the following command:

USING RS LIST COORD OF AXIS X

1.2.3 Resource Space Manipulation Operations

The Merge operation makes resource spaces RS1, …, and RSn at
URSL1, …, and URSLn respectively into one resource space RS subject to
any specified conditions and places the new resource space at URSL. It
can be represented by the following command, where |RSi| is the number
of axes of resource space RSi and Xik(RSj) represents that axis Xik of re-
source space RSj is to be merged (i=1, ..., n). The constraint clause speci-

14 Chapter 1 Resource Space Model Methodology

fies common_axis_number as the constraint name. The predicate of the
check clause is the constraint of the merge operation.

MERGE RS1, …, RSn [AT URSL1, …, URSLn]
INTO RS [AT URSL]
WHERE new_axis (RS) = X1μ(RS1) ∪ …∪ Xnν(RSn)
CONSTRAINT axis_number

CHECK |RS1| = … = |RSn| = |RS|
CONSTRAINT common_axis_number

CHECK number (common_axes) = |RS| –1.

The split operation separates a resource space RS at URSL into each
RSi at each URSLi. The axis X of RS will be separated into X1i (RS1), …,
and Xnj(RSn). The Split command is represented as follows, where the
check clause requires that no coordinate or axis be removed in the split op-
eration.

SPLIT RS [AT URSL]
INTO RS1, …, RSn [AT URSL1, …, URSLn]
WHERE X (RS) JOIN-INTO X1i (RS1) = <coordinate_set1> & …

& Xnj (RSn) = <coordinate_setn>
CONSTRAINT axis_split
CHECK X (RS) = X1i (RS1) �…�Xnj (RSn)

If resource spaces RS1, …, and RSn store the same type of resources and

they have k (k ∈ [1, minimum(|RS1|, |RS2|)]) common axes, then they can
be joined into one resource space RS such that RS1, …, and RSn share these
k common axes and |RS| = |RS1| + |RS2| – k. The join operation can be rep-
resented as follows:

JOIN RS1, …, RSn [AT URSL1, …, URSLn]
INTO RS [AT URSL]
WHERE COMMON AXES (axis1, …, axisμ)
CONSTRAINT common_axis_number
CHECK number (common_axes) ≤ |RS| – 1

1.2 Basis of the Resource Space Model 15

If two resource spaces RS1 and RS2 store the same type of resources and
have n (n = |RS1| = |RS2|) common axes, they can be united into one re-
source space RS by eliminating duplicates. RS is called the union of RS1
and RS2, and |RS| = n. The union operation requires that the resource
spaces to be united have the same number of axes and the same axis names.
It can be represented as follows:

UNION RS1, …, RSn [AT URSL1, …, URSLn] INTO RS
CONSTRAINT axis_number

CHECK |RS1| = … = |RSn| = |RS|
CONSTRAINT common_axis_number

CHECK number (common_axes) = |RS|.

1.2.4 Resource Space Modification

A newly created resource space has no resources. The following com-
mand can insert resources into the resource space.

INSERT R1…, Rm INTO RS1…, RSm [AT URSL1, … , URSLm]
 [WHERE <conditional expression>]

Instead of specifying a resource set directly, we can use a select state-
ment to extract a set of resources as follows.

INSERT INTO RS <axis1, axis2, axis3>
COORD <coord1, coord2, coord3>
BY SELECT A1, A2, …, An
FROM RS1, RS2, … , RSm
[WHERE <conditional expression>]

If the specified resource exists at the specified point of the given re-

source space and the user has the authority to delete it, then it can be de-
leted by the following statement:

DELETE R FROM RS1, …, RSm [AT URSL1,…, URSLm]
[WHERE <conditional expression>]

16 Chapter 1 Resource Space Model Methodology

The following update statement is used to change a resource index in a
given resource space.

UPDATE RS
REPLACE R1 WITH R2

[WHERE <conditional expression>]

1.2.5 View Definition

To define a view of a resource space, the name of the view as well as the
query that computes the view is required. The view can be defined by the
following command, where <query expression> is any valid query expres-
sion. The view name is represented by v.

CREATE VIEW v AS <query expression>

As an example, consider the view consisting of m axes of a resource
space. We can define view RS–view as follows:

CREATE VIEW RS–view (axis1, …, axism) AS
SELECT >=<>=<

mkmmmk ccXccX ,1,,1111 ,...,,...,,...,
1

FROM RS

The list of axis names can be omitted. We define a view over two re-
source spaces by using the merge operation as follows, where the new axis
axism is formed by >=< jYYiXXmm mmmm

CCCCYX ,1,,1, ,...,,,...,U .

CREATE VIEW RS–view (axis1, …, axism) AS
SELECT >< iXXXm mmm

CCCXXX ,2,1,21 ,...,,,...,, FROM RS1
MERGE
SELECT >< jYYYm mmm

CCCYYY ,2,1,21 ,...,,,...,, FROM RS2
WHERE X1 = Y1, …, Xm-1=Ym-1
AND Xm.axis_name = Ym.axis_name.

We can define a view combining two resource spaces by joining the
subspaces selected from them as follows:

CREATE VIEW RS–view (axis1, …, axism) AS
SELECT >< iXXXm mmm

CCCXXX ,2,1,21 ,...,,,...,, FROM RS1
JOIN

1.2 Basis of the Resource Space Model 17

SELECT >< jYYYn nnn
CCCYYY ,2,1,21 ,...,,,...,, FROM RS2

WHERE X1 = Y1, …, Xi = Yi (i≤minimum(m,n))

1.2.6 Query Language

The following three clauses are components of a query:

1. The SELECT clause lists the resource attributes required in the an-
swer.

2. The FROM <RS (X1, X2 , …, Xm)> clause specifies the resource space
RS to be used in the selection, where Xi is an axis.

3. The WHERE <conditional expression> clause conditions the answer
in terms of coordinates of resources and semantic relationships be-
tween the coordinates.

A typical query takes the following form, where Ai represents a feature
of the destination resource, and Ri names a source resource space. A
SELECT * clause specifies that all attributes of all resources appearing in
the FROM clause are to be selected. The compound name re-
source_space.attribute avoids ambiguity when an attribute appears in more
than one resource space. However if an attribute appears in only one of
the resource spaces in the FROM clause, the resource_space qualifier can
be omitted.

SELECT A1, A2, … An
FROM R1, R2, … Rm
WHERE <conditional expression>

Query can focus on either one point in the space or an area specified
by more than one coordinates at one axis. An area consists of a set of
points.

The ACM Computing Classification System can be constructed as a
normalized 3-dimensional information space: ACM–CCS (Category, Pub-
lication, Letter). The query “Find all journal papers in the resource space
ACM–CCS which relate to Resource Space Model” can be expressed as
follows:

SELECT * FROM ACM–CCS

18 Chapter 1 Resource Space Model Methodology

WHERE Category =“Resource Space Model” & Publication =
“Journal”

1.2.7 Visualized Resource Locating

Locating resources is the basic operation of the Resource Space Model.
Users can accurately locate a set of resources by giving coordinates on
every axis. The underlying premise is that users know the structure of the
space or that users’ viewpoint consists with the space designers on classifi-
cation of resources. A visualized resource locator provides users with in-
tuitive knowledge on the underlying structure of the resource space.

Fig.1.5 shows a three-dimensional visualized resource locator for ex-
hibiting Dunhuang culture. Points in the space correspond to the small
cubes in the 3-dimensional large cube. Each side of the cube can display
image, text and links. Users can see the details by clicking them. The op-
erations are arranged as buttons in the up-row.

Fig. 1.5. The visualized 3-dimensional resource space locator.

1.2 Basis of the Resource Space Model 19

Fig.1.6. shows an n-dimensional visualized resource locator. Users can
create a view by selecting axes from the n-dimensional resource space.

Fig. 1.6. Visualized n-dimensional resource locator.

20 Chapter 1 Resource Space Model Methodology

1.3.1 Management of Web Pages

The World Wide Web enables human to use browsers to display Web
pages and jump from one page to another via hyperlink. How to effi-
ciently index and manage the huge Web pages is an important issue.

The content of a Web page can be classified by topics such as news, fi-
nance, sport and health. Each topic can be further classified by time and
language. This naturally corresponds to the classification characteristics of
the Resource Space Model. A 3-dimensional resource space (topic, time,
language) shown in Fig. 1.7 can be used to manage Web pages. The point
(Chinese, 2006-12-13, finance) in the space contains a set of Web pages on
finance (URLs). The resource space can provide classification semantics
and distance measure between points that relational database cannot di-
rectly provide for better retrieval and learning on the Web.

Fig. 1.7. A 3-dimensional resource space for managing the content of Web
pages.

2006-12-13

Chinese

Topic

Language

Time

News

Finance

Sport

http://finance.sina.com.cn/
http://business.sohu.com/
http://finance.163.com/

Charts, Companies, etc Stock

Bank

Insurance

English

1.3 Application Scenarios of the Resource Space Model

Entering into the point, users can obtain the required Web pages on fi-
nance ⎯ they do not need to input URL multiple times nor jump between
URLs. The point includes more relevant statistic information on econom-
ics. The finance coordinate can be divided into finer coordinates, for ex-
ample stock, bank and insurance information. This refinement can ex-
press more detailed information when specifying resources, and can refine
users’ interest when retrieving resources. The Resource Space Model pro-
vides a new way to store and express Web resources.

The hierarchical classification characteristic of the resource space sup-
ports the management of a hierarchical Web structure from the hierarchical
surface Web content to the underlying databases.

1.3.2 Managing Multi-layer Tables

Multi-layer tables provide integrated information of multiple abstraction
levels from different analysis. The higher layers provide more abstract in-
formation. The lower layers constitute a fine classification of the higher
layer, for example, professor, associate professor and assistant professor
constitute a fine classification of the teacher class. Table 1.1 shows such a
table on university human resources.

The traditional relational data model excludes this type of tables since
the first normal form of relational data model requires the flat table and
atomic fields. Many relational tables are needed to decompose the multi-
layer table if we use relational data model to realize the management of
human resources with this form.

The table naturally corresponds to a 2-dimensional resource space as
shown in Fig. 1.8. A point represents a set of persons of certain depart-
ment and certain rank. Moreover, a name axis in alphabetical order can be
added to form a 3-dimensional resource space.

1.3 Application Scenarios of the Resource Space Model 21

22 Chapter 1 Resource Space Model Methodology

Table 1.1. A multi-layer table of university human resources.

School of
Science

School of Engineering School of
Business

D
ep

t.
of

 M
at

he
m

at
ic

s

D
ep

t.
of

 P
hy

si
cs

D
ep

t.
of

 C
he

m
is

try

D
ep

t.
of

 C
he

m
ic

al

En
gi

ne
er

in
g

D
ep

t.
of

 C
om

pu
te

r S
ci

-
en

ce

&
 E

ng
in

ee
rin

g

D
ep

t.
of

 M
ec

ha
ni

ca
l

En
gi

ne
er

in
g

D
ep

t.
of

 A
cc

ou
nt

in
g

D
ep

t.
of

 E
co

no
m

ic
s

Professor

Associate
Professor

A
ca

de
m

ic
 S

ta
ff

Assistant
Professor

Ph
D

G
ra

du
at

ed

M
Ph

il

St
ud

en
t

Under-
graduate

Su
pp

or
t

St
af

f

V
is

iti
ng

 S
ta

ff

University Human Resources

Fig. 1.8. A resource space for specifying university human resources.

The more layers the table has, the more advantages of the resource
space model shows.

1.3.3 Management of Photos

A software tool that can efficiently manage and locate photos is very use-
ful. Usually, we store photos in folders of a file system (the directories of
a file system actually constitutes a 1-dimensional resource space). To effi-

School

Human

Academic
Staff

Student

School of
Science

School of
Engineering

School of
Business

University Human Resources

Dept. of
Mathematics

Dept. of
Physics

Dept. of
Chemistry

Professor

Associate
Professor

Assistant
Professor

Graduated

Under-
Graduated

Name

A

Z

1.3 Application Scenarios of the Resource Space Model 23

24 Chapter 1 Resource Space Model Methodology

ciently locate resources, we can choose database systems to record infor-
mation about photos such as place, time, and the path of storing photos.

However, people concern content of photos rather than their names
when retrieving. The contents can be classified into three categories: hu-
man, artifact and nature. It can also be classified by time and place. So
photos’ content can be specified by a 3-dimensional resource space as
shown in Fig. 1.9. Each coordinate can be a coordinate tree, for example,
coordinate China can be classified into Beijing, Shanghai, Xi’an, etc.

Fig.1.9. A 3-dimensional resource space for specifying photos.

This application proposes a new requirement: adding new coordinates
during use, as we cannot estimate future visiting places and photos are
added to the resource space after visiting.

New coordinates can be added to the resource space if its original nor-
mal forms can be retained. But a Resource Space Model system needs to
update its schemas at all levels in this case.

Shanghai

2005
2004 Place

Time

Content

Human

Nature

Artifact

2006

China Japan UK

Beijing

Xi’an

Spring

Autumn
Summer

Winter

A set of photos

New

1.3.4 Geographical Resource Space

A geographical Resource Space system can reflect multiple content layers
over the same region, for example, geographical, ecological, economical
and social information of the same region determined by longitude and
latitude as shown in Fig. 1.10.

Every point (regional information) can further define a resource space
specifying details, for example, the 3-dimensional resource space (popula-
tion, religion, occupation). The system can display the statistical data
about the population of different religions and the population of different
occupation in various charts.

This example shows a characteristic of the resource space ⎯ the single
semantic entry point of machine-understandable and human-
understandable content.

information.

1.3 Application Scenarios of the Resource Space Model 25

Fig.1.10. An embedded resource space for layered geographical

26 Chapter 1 Resource Space Model Methodology

1.3.5 Multi-dimensional ACM Computing Classification System

The Resource Space Model can be used to reform the HTML-based ACM
Computing Classification System into a normalized 3-dimensional infor-
mation space: (Category, Publication, Letter) as shown in Fig.1.11.

The space satisfies the third normal form. The category axis contains
eleven categories marked by the letters from "A" to "K", each of which
corresponds to a coordinate hierarchy. Each coordinate at the category
axis corresponds to a 2-dimensional slice (Publication, Letter), so users
could retrieve the required information according to the publication types
and/or the alphabet sequence in the given category. This feature is not
provided by the existing classification system.

The Resource Space Model enables information retrieval in a 3-
dimensional space. For the purpose of raising the retrieval efficiency, we
can add a new axis: topic=(methodology, theory, application, product) to
refine the space.

Fig. 1.11. The resource space of normalizing the “ACM Computing
Classification System”.

Letter

Publication

Web Page

Proceedings

Category
A K B

A

Z

B

Journal

Book

C

Topics

1.3.6 Management of Bio-information

The bio-information on the Web is currently managed by versatile data-
bases developed by different countries. The Resource Space Model can be
used to reform the existing bio-information retrieval and management sys-
tems. All the bio-information databases can be uniformly and normally
specified in the resource space. Bio-information can be specified by a
two-dimensional resource space as shown in Fig.1.12, where “PubMed”,
“Structure”, “Genome” and “PopSet” respectively stand for: biomedical
literature, macromolecular structure, complete genome assemblies, and
population study data sets.

Fig. 1.12. A 2-dimensional resource space for uniformly and normally
managing bio-information.

Gene

PopSet

Genome

Structure

Protein

Nucleotide

PubMed

Databases

Accession
Retrieval
Approach

Author Title Medline Journal Keyword

1.3 Application Scenarios of the Resource Space Model 27

28 Chapter 1 Resource Space Model Methodology

1.3.7 Media Content Space

A four-dimensional Dunhuang cave content space can be designed by clas-
sifying the cave content according to the following four axes: dynasty, ar-
tifact type (wall painting, color statue, calligraphy), media type (text,
video, image) and cave number as shown in Fig. 1.13. The dynasty axis
can be classified by the following sequential coordinates: Tang, Song,
Yuan, Ming, and Qing. Any coordinate can be refined, for example, the
Tang dynasty can be further divided into three sequential stages: early,
middle and late. Given a set of coordinates on every axis, a set of contents
can be accurately located.

Fig. 1.13. A resource space for normalizing media content.

1.3.8 Automatically Add New Resources to the Resource Space

A resource has external feature and internal feature. The internal feature
reflects the content of resources. The external feature helps distinguish

Dynasty

Tang Song Yuan Ming

CaveNo.

Artifact Type

Cave Content

Early Middle Late

285

Wall painting

Media type

one resource from the other resources. Usually the internal feature is not
easy to be accurately obtained or expressed, while the external features can
be accurately captured.

There could be no intersection between the external feature and the in-
ternal feature. For example, the publication date does not reflect the con-
tent of a paper.

A resource space represents the designer’s viewpoint of classification on
resources. If its user has stored some resources in the space, the resource
space containing resources also reflects the user’s classification viewpoint.
Such classification viewpoint can help classify new resources.

The approach to automatically adding resources to resource space varies
with the features of resources. To automatically add new papers to the re-
source space depends on the comparison between the external features and
internal features of the new paper and the features of the point.

The keywords of papers in a point of the existing resource space repre-
sent authors’ viewpoint on the classifications of the contents of papers. In-
formation such as the publisher and the publication type (journal or pro-
ceeding) available from the publishers’ website is the external feature.

The following process helps add new papers to the paper resource space.

1. Extract keywords from the papers in every point of the resource
space, and unite a point p’s keyword set with its coordinates to form a
set Kp. An empty point Kp only consists of the coordinates of p. In-
formation retrieval techniques like TF-IDF can help find important
words in text (Salton, 1989; Salton, 1991).

2. Extract the keywords from the new paper and put them into set KI
representing the internal features.

3. Obtain the external features about the new paper such as journal
name, publisher, publishing date and impact factor, and put them into
set KE. The main external features are usually available from the
metadata of journals.

4. Unite the external features and the internal features on the new paper
K=KI∪KE.

5. For every point p in the space, compare K with Kp, if K can best
match Kp according to some criteria (e.g., share a certain number of
keywords in the meaning of domain ontology), the paper is likely to
match the point and therefore put the new paper into the point, other-
wise put it into the candidate pool awaiting additional techniques.

1.3 Application Scenarios of the Resource Space Model 29

30 Chapter 1 Resource Space Model Methodology

The citation relation reflects a kind of content inheritance relation. The
citing and cited papers in the known classification can help determine the
classification of a paper. If a paper in a point is cited by or cites the new
paper, then the two papers probably belong to the same category. The
more papers in a point cite or are cited by the new paper, the higher prob-
ability of the new paper belongs to that point.

We observed two phenomena from experiments of using TF-IDF to ex-
tract keywords and match the new paper and the point:

1. The more resources evenly distributed in the resource space, the better
the effect of automatically adding new resources to the space; and,

2. The best effect (approximately 80%) can be reached when the weight
of the external features reaches 90%.

That is to say, the external features play a more important role.

Fig.1.14 depicts the way to automatically classify papers by using the
resource space.

 Fig. 1.14. Using resource space to automatically classify documents.

Matching

Matching
Ci={ki1, ki2, ki3} X

Y

Cj={kj1, kj2}

External and internal
features of document K

Point(Cj, Ci)

Coordinate tree

Resource
Space
Designer

User

Kp

1.4 Design Method 31

1.4 Design Method

Designing a resource space for application depends on the following three
technical factors:

1. knowledge on the Resource Space Model,
2. domain knowledge, and,
3. design experience.

A resource space design consists of the following steps:

1. resource analysis;
2. top-down resource partition;
3. design low dimensional resource spaces like 2- or 3-dimensional re-

source spaces;
4. increase dimensionality by joining resource spaces or adding a new

dimension to the existing resource space according to application re-
quirement;

5. decrease dimension by splitting a resource space according to applica-
tion requirement; and,

6. check normal forms of the resource spaces.

1.4.1 Resource Analysis

Resource analysis is to determine the application scope, to know the re-
sources to be managed, and then to specify the resources in a Resource
Dictionary.

Resources usually share some common attributes, for example {name,
author, owner, abstract, version, location, privilege, access-approach, ef-
fective-duration, semantic relevant resources}. The abstract attribute (can
be formal or informal) represents content abstraction, or the function de-
scription of a service.

Access privilege concerns:

1. public ⎯ any user can access to it;
2. group ⎯ only group members can access to it; and,
3. private ⎯ only the creator can access to it.

 The Resource Dictionary enables designers to collect and edit resources
and finally forms the axes of the resource space by defining resource clas-
sification hierarchy. A Resource Dictionary includes the following opera-
tions:

32 Chapter 1 Resource Space Model Methodology

1. Consistency checking ⎯ check the semantic consistency between de-
scriptions.

2. Redundancy checking ⎯ check redundancy and delete the redundant
descriptions and redundant resources.

3. Classification ⎯ classify resources according to the specialization re-
lationship determined by existing taxonomy, existing classification
standard, available domain ontology, and user judgement.

1.4.2 Top-down Resource Partition

Yin-Yang is a representative of traditional Chinese understanding of how
things are formed and work. Yin represents the following abstract concepts
generalized from the real world: dark, passive, downward, cold, contract-
ing and weak, while Yang represents the following abstract concepts gen-
eralized from the real world: bright, active, upward, hot, expanding and
strong. Yin and Yang represent two energies that cause everything to hap-
pen. Yin and Yang are meta concepts in ancient Chinese philosophy.

Different epistemologies have different meta concepts.

Due to the difference of epistemology and culture, designers could have
different partition solutions on the same set of resources, so a uniform
viewpoint on resource partition is needed. The first step is to reach a top-
level partition consensus.

Human, information and natural (or artificial) object can be the re-
source partition of human society at the epistemological level. The top-
level resource partition of a domain is a special case of this epistemologi-
cal level, for example, the top-level resources of an institute can be classi-
fied as three independent categories:

1. human resources,
2. information resources, and
3. service resources (including facilitates).

Each category can be refined until the categories are small enough for
applications as shown in Fig.1.15. (Zhuge, 2004b).

1.4 Design Method 33

Fig. 1.15. An example of top-down resource partition.

1.4.3 From Low Dimension to High Dimension

Designers can easily handle low-dimensional spaces. So we can first de-
sign low dimensional resource spaces then add a new dimension to the ex-
isting space or integrate low-dimensional spaces into higher dimensional
resource spaces.

A multi-layer table like Table 1.1 is suggested to help design a 2-
dimensional resource space.

The design process is as follows:

1. Determine the number of resource spaces according to the number of
top-level resource categories in the domain. For example, three re-
source spaces can be established for human resources, inheritance re-
sources and faciliate resources.

Is-part-of

Is-part-of Is-A

Is-part-ofIs-part-of

Inherit
Domain
Level Human resources Information resources Facilities

Student Staff Personal Research Office

Teaching
Staff

Support
Staff

Managing
Staff

Machine

Server

Human Information Natural/Artificial objects
Epistemology
Level

PC Printer

34 Chapter 1 Resource Space Model Methodology

2. Determine axes’ names according to the resource categories at the
universal level or domain level. An axis name represents a category
of the domain-level partition.

3. Determine the first-level coordinate names. Each coordinate reflects
one of the categories of the axis.

4. Determine the coordinate hierarchies. For each first-level coordinate,
determine its low-level coordinates top-down until the basic category
according to the resource partition hierarchy. The granularity of the
basic category depends on the application requirement on resource re-
trieval.

5. Check independency between coordinates. If the independency is not
satisfied, re-consider resource-partition at this level and adjust coordi-
nates.

6. Check orthogonality between axes. If the orthogonality is not satis-
fied, re-consider the coordinate settings, and then adjust relevant co-
ordinates.

According to the above process, designers can construct two resource
spaces as shown in Fig.1.16 for the resource partition example of Fig.1.15.

Fig. 1.16. Example of designing 2-dimensional resource spaces.

The Resource Space Model allows existing spaces to be joined into one
to achieve the effect of the global resource view. Whether we need to join
multiple resource spaces into one depends on application requirement.

Facilities Information

HumanHuman

Student

Personal Research

Staff Staff

Student

Machine Office

PC

Printer

Server

Scanner

1.4 Design Method 35

To implement the join operation, we need to check the condition of the
join operation first. It is important to ensure that different spaces to be
joined to specify the same type of resources.

For example, the two resource spaces of Fig.1.16 share a common axis
and specify the same type of resources. So they can be joined into one 3-
dimensional resource space as shown in Fig.1.17.

The join operation may create new spaces, e.g., joining two two-
dimensional resource spaces will generate one three-dimensional resource
space where there exists a new two-dimensional space. The points in the
new space should be defined together with the new space. For non-empty
resource spaces, the following two strategies can be adopted:

1. Place the common resources in the old points sharing common coor-
dinates of different spaces into the new points and keep the rest re-
sources in the original space (i.e., the subspace of the new space); and,

2. Keep old resources in the original spaces (i.e., the subspace of the
new space) and establish the mapping between the new points and the
old points.

Fig. 1.17. A 3-dimensional resource space constructed by joining two 2-
dimensional spaces.

Human

OfficeMachine
Facilitate

Information

PersonalInfor

ResearchInfor

Staff

Student

36 Chapter 1 Resource Space Model Methodology

Another example of creating a high dimensional space from two low
dimensional spaces is shown in Fig. 1.18. The two 3-dimensional re-
source spaces specifies the same type of resources⎯human; and, they
share two axes⎯Journal and Responsibility. So they can be joined into a
4-dimensional resource space to finely classify the resources.

Man
ag

ing
 Edio

r

Edit
or

in
Chie

f

Ass
oc

iat
ive

 Edit
or

Edit
ori

al
Mem

be
r

Man
ag

ing
 Edio

r

Edit
or

in
Chie

f

Ass
oc

iat
ive

 E
dit

or

Edit
ori

al
Mem

be
r

Man
ag

ing
 Edio

r

Edit
or

in
Chie

f

Ass
oc

iat
ive

 Edit
or

Edit
ori

al
Mem

be
r

Fig.1.18. Example of creating high dimensional space from low dimen-
sional spaces.

1.4 Design Method 37

1.4.4 Abstraction and Analogy in Designing Resource Space

Examples play an important role in learning and design processes. People
learn the process and the pattern of design by example. To design for a
new application, a designer often recalls his/her experience or others’ ex-
perience (examples) when planning and evaluating a design.

A good designer often makes abstraction when matching examples with
the new application requirement. Abstraction also generates experience of
matching so that more relevant examples can emerge during design.

Abstraction and analogy represent human problem-solving ability. If we
regard the design of resource space as problem-solving, abstraction and
analogy can play an important role in raising the efficiency of resource
space design. By abstraction, two seemly different concepts can be classi-
fied into the same category if a common ancestor can be found.

The following describes the process of using experience to design a re-
source space. The pre-requisite condition is that experience is available ei-
ther in assistant tool or in organization.

1. Find a domain D in the ontology repository (a kind of experience of
community) similar to the new domain D’.

2. Map ontology of D into ontology of D’ with abstraction. Existing
methods of ontology mapping can help this step.

3. Map the resource space RS of D into the resource space of the new
domain RS’ according to the mapping between ontologies.

4. Add the new ontology to the ontology repository and then make nec-
essary abstraction.

5. Check the new resource space.
a) Check the independency between coordinates according to the

synonym relationship between coordinates in the context of do-
main ontology. The resource dictionary and domain ontology are
the basis of determining the independency between coordinates.
An independency checking tool can be designed to help designers
with such checking.

b) Check the orthogonal relationship between axes. To check the re-
finement relation is the basis of orthogonality checking. Let
X=(C1, …, Cn) and X’ be two axis, X’ is a fine classification of X if
X’ is the common attributes of Ci. The independency checking
should be carried out before the checking of orthogonality. An or-
thogonality checking tool can be designed to help designers with
such checking.

38 Chapter 1 Resource Space Model Methodology

6. Verify the new resource space RS’ and make necessary modifications
according to the query requirement.

7. Terminate the process if the designer satisfies with the new resource
space, otherwise go to step 1.

Fig. 1.19 depicts the above process. Analogical reasoning can help de-
rive out new relations (Zhuge, 2007).

Fig. 1.19. Design by analogy and abstraction.

Resource Space Mapping

Structure Mapping

Domain Level

Epistemological Level
New Domain

Concept Mapping

Resource Space New Resource Space

Relation Mapping

Query Requirement

Ontology Repository

RSM Knowledge

1.5 Use Resource Space to Manage Relational Tables 39

The creation of a new resource space depends on the following factors:

1. the existing examples of well-design resource spaces and correspond-
ing domain ontology mechanisms;

2. the domain ontology of the new domain;
3. matching between the existing domain ontology and the new domain

ontology; and,
4. query requirement in the new domain.

Given a domain ontology, it is possible to automatically generate the re-
source space of this domain. But, the automatically generated resource
space may not be suitable for the domain application if the users’ query re-
quirement is neglected. Take human resources in a university for example,
some users may expect to locate a student according to department and
grade, but some other users may expect to locate a student according to
gender and home address. Query requirement regulates the domain rele-
vant classification.

1.5 Use Resource Space to Manage Relational Tables

A relational table can be transformed into a Resource Space Model. A ta-
ble consists of one or several keys and a set of attributes dependent on the
key(s). It can be transformed into a Resource Space Model with a key
dimension and an attribute dimension denoted as follows:

Table1(Key, A1, A2, .., An) ⇒ RSM(Key, Attribute(A1, …, An)), where at-
tribute denotes the axis name and (A1, …, An) denotes coordinates.

Coordinates of the attribute dimension are the attributes, and the coordi-
nates of the key dimension are the values of the key as shown in Fig.1.20.

 A1 A2 …… An

Fig. 1.20. A two-dimensional resource space managing a relational table.

Key

Attribute

Valuen

Value1
Value2

40 Chapter 1 Resource Space Model Methodology

For a first-normal-form table with one key: table1(Key, A1, A2, .., An), we
can transform it into RSM(Key, A(A1, …, An)). Since any attribute is
atomic in a first-normal-form relational table, there does not exist name
duplication between A1, A2, …, and An. Therefore the resource space satis-
fies the first-normal-form of the Resource Space Model.

If a table has more than one key, it can be transformed into a resource
space with one attribute dimension and more dimensions for the keys. For
example, a table with two keys can be transformed into a 3-dimensional
resource space as shown in Fig.1.21.

Table2(Key1, Key2, A1, A2, .., An) ⇒ RSM(Key1, Key2, A(A1, …, An)).

This 3-dimensional space can be split into two 2-dimensional resource
spaces, each of which has only one key-dimension.

Fig. 1.21. A 3-dimensional resource space transformed from a relational
table with two keys.

Key1

Key2

Attribute

Valuen

Value1
Value2

A1 A2 An

1.6 The Semantic Link Network 41

Multiple relational tables can be managed by a 3-dimensional space as
shown in Fig.1.22, where the table-name dimension denotes all the tables
that need to be managed. Each coordinate at the table-name dimension
corresponds to a 2-dimensional space slice with a key dimension and an at-
tribute dimension that represent a relational table.

Fig. 1.22. Manage multiple tables by using a 3-dimensional resource space.

1.6 The Semantic Link Network

Anything in the world is not isolated, has its existence condition ⎯ certain
relations with others. That is why children are often trained to learn con-
cepts by filling in blanks with a given context.

The Semantic Link Network (in short SLN) is a semantic model for de-
scribing the appearance, abstraction or implied relations between re-
sources. Although sometimes it seems no clear relations between two re-
sources, abstraction semantic relations may be derived out by semantic
relation reasoning.

As shown in Fig. 1.23, a Semantic Link Network usually consists of an
abstraction level and an instance level (Zhuge, 2007). An abstraction Se-

Key

Table-name

Attribute

A 2-dimensional space slice

42 Chapter 1 Resource Space Model Methodology

mantic Link Network is the abstraction of several instance Semantic Link
Networks.

Fig. 1.23. An example of the Semantic Link Network.

The semantic link is the natural extension of the hyperlink. A semantic
link connects two semantic nodes with certain semantics. A semantic node
can be an identity, a semantic description and even a Semantic Link Net-
work. A Semantic Link Network naturally supports semantic reasoning
based on the semantic linking rules.

People Document Device Author Own

Professor Student Supervise

SubtypeSubtype

Zhuge Li Sun Yao

Instance Instance

Supervise

Supervise

Subtype

Publish

Abstraction Level

Instance Level

Paper 001

Instance

Author

Computer

Subtype

Own

PC0001

Own

Instance

Project01

Project Develop

Acknowledge

Paper

Develop

1.6 The Semantic Link Network 43

A semantic link can be reinterpreted to suit particular applications. For
example, reference relation can be explained as the citation relation be-
tween papers, explained as the call relation between programs, and can be
also explained as the foreign key relation between relational tables.

Application-specific semantic links need to be defined to support do-
main applications. For example, the layout relation is useful in specifying
the relations between wall-paintings. Browsers for Semantic Link Net-
work can be developed according to application requirements (Zhuge et
al., 2004e).

Fig.1.24 shows the interface of a semantic relation search mechanism
for exhibiting Dunhuang culture. Users can see the interested resources,
the relevant resources and the relations between them.

Fig. 1.24. The interface of a semantic search mechanism.

Semantic link was initiated for describing the relations between models
for improving model retrieval (Zhuge, 1998). It was then extended to con-
struct Active Document Framework (ADF) as a new e-document model

44 Chapter 1 Resource Space Model Methodology

(Zhuge, 2003). It was systematically introduced in The Knowledge Grid
(Zhuge, 2004d), where a single semantic image integrates Resource Space
Model and Semantic Link Network, and a unified single semantic image
query language was suggested.

The Semantic Link Network has been proved useful in Web page pre-
fetching and object pre-fetching (Pons, 2005; Pons, 2006). As a semantic
model, the Semantic Link Network concerns typical semantic relations and
relation reasoning. Developers need to design application-specific rela-
tions to support applications.

A Semantic Link represents the semantic relation of a property or a set
of properties between two semantic nodes. A semantic link can be of the
following types: cause-effect (ce), implication (imp), subtype (st), similar-
to (sim), instance (ins), sequential (seq) and reference (ref).

The Semantic Link Network naturally supports a semantic peer-to-peer
network to improve the efficiency of peer-to-peer query routing (Zhuge
and Li, 2007b). How to automatically establish the semantic links is a ma-
jor challenge.

The Resource Space Model focuses on the classification on the content
of resources, while the Semantic Link Network focuses on the external
semantics of resources. It is not realistic to expect the Semantic Link
Network to be able to describe complicated semantics that requires expert
knowledge in such areas as natural language processing, logics and
mathematics.

A Semantic Link Network can be established autonomously by incorpo-
rating logical reasoning, analogical reasoning, inductive reasoning and as-
sistant tools. A large-scale Semantic Link Network can be formed by inte-
grating individual Semantic Link Networks. Semantic Link Networks
keep evolving with the execution of the up-level applications and human
behaviors of using the network.

To reflect the probable relations, the Semantic Link Network can be ex-
tended to a probabilistic Semantic Link Network: One node can link to
any other semantically relevant node with a probability. The uncertain
semantic link can be represented as A⎯<α,p>→B, where α is a semantic
factor and p is the probability of α.

Metcalfe’s Law states that "The power of the network increases expo-
nentially by the number of computers connected to it. Therefore, every
computer added to the network both uses it as a resource while adding re-
sources in a spiral of increasing value and choice."

1.7 Comparison between RSM and RDBM 45

What is the effect of the Semantic Link Network?

The importance of a Semantic Link Network depends on the number of
people defining and maintaining semantic links rather than the definition
of semantic links itself.

The evolution of the Semantic Link Network will form a kind of seman-
tic effect that helps promote decentralized applications.

In daily life, people often ask neighbors/friends when they have ques-
tions so neighbors/friends are likely to hold relevant contents. For scien-
tific papers, citation relations are dense between papers of the same area.
This semantic relevancy leads to a semantic community phenomenon in
pursuing efficiency.

The semantic communities can help promote the efficiency of search-
ing relevant concepts by focusing on a specific semantic community.

Semantic locality requests to store relevant contents in semantically
close places.

The storage mechanism of the Resource Space Model concerns the se-
mantic locality to ensure search efficiency. It is also a criterion to imple-
ment a P2P semantic overlay to support semantic-rich decentralized appli-
cations.

The Semantic Link Network is a general semantic space. The Resource
Space Model focuses only on one type of relation⎯the classification rela-
tion, so it can be regarded as a special case of the Semantic Link Network.

The Resource Space Model and the Semantic Link Network follow dif-
ferent rules. The theories on the Resource Space Model are not suitable for
the Semantic Link Network. However, a resource space can be trans-
formed into a Semantic Link Network, and a special Semantic Link Net-
work can also be transformed into a resource space. Moreover, they can be
integrated to provide views of different layers: the Resource Space Model
placed over the Semantic Link Network provides with a classification view
while the Semantic Link Network provides with a scalable semantic link
network view.

1.7 Comparison between RSM and RDBM

Recognizing the attributes of an object and knowing the classification of
objects are two basic approaches to understanding the real world. The
two approaches support each other in recognizing the real world.

46 Chapter 1 Resource Space Model Methodology

An object has attributes of many aspects like physical and chemical
characteristics. Objects sharing the same set of attributes can be classified
into the same category. Different aspects can form different classification
methods. Existing classifications can be refined with the development of
knowledge on classifications and attributes.

The Relational Database Model is based on the attributes of objects.
Just like previous data models such as the network model and object-
oriented model, both the Resource Space Model and the Relational Data-
base Model support application systems. An ideal data model should be
simple, capable and close to human thinking.

The Resource Space Model and the relational database can be further
compared as follows.

1. The Resource Space Model focuses on the classification on objects
(resources in the digital world). It allows designers and users to ob-
serve resources as a whole and then classifies them top-down by
commonsense for high-level classification and domain specific
knowledge for low-level classification. The relational database model
focuses on attributes of objects (entities). In representation, the Re-
source Space Model is a uniform coordinate system, while the data
model of the RDBMS is a relational table. Usually, an application
needs to select (search) from many tables so operations on multiple
tables are inevitable. The cost of operations on multiple table needs to
be reduced.

2. A basic request of the classic relational database model is the atomic-
ity of data. Attributes are defined by datatypes. The Resource Space
Model does not request this atomicity in nature. A coordinate in the
Resource Space Model can be defined by semantic description includ-
ing basic datatype, keyword set, or a coordinate tree representing fine
classification at different levels. So resources managed by the Re-
source Space Model can be any form of resources, while the classical
relational data model only manages atomic data.

3. The normalization approaches of the Resource Space Model and the
Relational Database Model are different in nature. The relational da-
tabase model normalizes the functional dependence relation, while the
Resource Space Model normalizes the classification relation. The Re-
source Space Model enables a uniform and universal resource view
when operating resources. It is suitable for class operations since to
retrieve a class is equivlent to locate a point in a resource space. To
retrieve a class of data, the relational database system needs to check

1.7 Comparison between RSM and RDBM 47

all of the records unless it is indexed. The RDBMS essentially sup-
ports the view of one or more tables.

4. The Relational Data Model requests that application developers are
the same as the database designer or that the applicatoin developers
are very familiar with the database design because they need to know
the table schemas for coding. The Resource Space Model also request
the application develpers know the structure of the resource space.
In applications, users should be familar with one-dimensional classifi-
cation of the resources in the application domain. This is the basis of
understanding the multi-dimensional resource space. In an organiza-
tion, high-rank users are interested in high-level classifications, low-
rank users are responsible for low-level classifications. The resource
space actually provides a type of domain knowledge, which supports
various applicaion systems.

5. The basic semantics of the Relational Database Model relies on the
Data Definition Language (DDL). The DDL is used to create and de-
stroy databases and database objects. These commands will primarily
be used by database administrators during the setup and terminate
phases of a database project. The basic semantics of the Resource
Space Model is the commonsense on classification at high-level and
the domain knowledge on classification at low level. Domain
ontology helps explain low-level semantics.

6. For normalization, the Relational Database Model introudces artificial
attributes like identity to differentiate one object from the others.
Otherwise, the key does not exist in natural attributes in many cases.
The Resource Space Model does not have this limitation.

7. Relational table raises its search efficiency by establishing one- di-
mensional index on attributes. The resource space uses one multi-
dimensional index on the whole space. This multi-dimensional nature
requires special storage mechanism different from relational database.
As a descrete multi-dimensional index, the resource space has advan-
tages in search efficiency.

8. Complex resources are properties if they are correctly stored. The
existing resources bring users’ classification viewpoint so they can be
used to enrich the semantics of axes, coordinates and even points. In
relational table, data does not contain such rich semantics as complex
resources.

Above differences determine that the Resource Space Model concerns
the contents (semantics) of resources and the content-based classification
so it supports content-based operation. The relational database model con-

48 Chapter 1 Resource Space Model Methodology

cerns the attributes of the objects being managed so it supports attribute-
based operation.

Differences exist between the design method for the relational databases
and the design method for the Resource Space Model. The design method
for the Resource Space Model does not have the conceptual model so ex-
perience plays an important role when designing an appropriate resource
space. The Resource Space Model’s conceptual model is actually the
same as its data model. Its hierarchical resource organization approach is
in line with the top-down resource partition and the “from general to spe-
cial” thinking characteristic.

The classification-based normalization requires the Resource Space
Model to have a special design method and tools, which are different from
the Relational Database Model. The design of a resource space concerns
the resource dictionary, independency checking of coordinates, and or-
thogonal checking of axes. The design of the relational database concerns
the data dictionary and the balance between the normal forms and the re-
trieval efficiency with respect to the application requirement.

A basic semantic overlay should be able to describe basic semantic re-
lations and can further find potential semantic relations. Just like rela-
tional database only focuses on very basic relations such as attribute-value
relation and functional dependence relation, the Resource Space Model fo-
cuses on the classification relations. It is an interesting issue to find a way
to integrate different types of semantics. The Resource Space Model,
UML, OWL, and database can be mapped from one into another and inte-
grated with each other to enhance and support each other.

1.8 Questions and Answers

Question 1. We have the relational database model and many commercial
database systems. Do we still need Resource Space Model?

Answer 1. Different models have different application scopes. The rela-
tional database model is useful in many applications, especially in pure
data management. The Resource Space Model aims at managing contents
of various resources rather than pure data.

Question 2. What are the distinguished characteristics of the Resource
Space Model compared with existing data models.

Answer 2. The Resource Space Model is based on content classification
reflecting human classification commonsense and thinking on recognizing

1.8 Questions and Answers 49

real-world objects. Coordinates at each axis are discrete and any coordi-
nate can be a tree strucuture. Using the multi-dimensional index, the Re-
source Space Model supports efficient searching.

Question 3. Resource Space Model designers may not clearly know the
classification of resources. For example, some cross-area book could be-
long to two categories.

Answer 3. The Resource Space Model is good at managing the content
that can be clearly classified. Designers can design resource spaces of dif-
ferent normal forms according to different applications. The following ap-
proaches can be used to deal with this issue:

1. add undetermined coordinates to specify those un-determined resources;
2. add a cross-class coordinate to appropriate axis;
3. introduce fuzzy theory to establish a fuzzy Resource Space Model as in-

troduced in (Zhuge, 2004c); and,
4. introduce probability into Resource Space Model to reflect the probabil-

ity world (see chapter 9).

Question 4. Can Resource Space Model change structure during use?

Answer 4. The original Resource Space Model is designed for specific ap-
plications just like databases, so it is inappropriate to change structure after
design. On the other hand, the normal form would be damaged if we
change the structure of the Resource Space Model. There are two ways to
resolve this issue. One is that we can design a more stable resource space
since diverse resource spaces can be designed for an application. The sec-
ond is that we can design a Resource Space Model system that can adapt to
change.

Question 5. Can we use existing database systems to realize a resource
space system?

Answer 5. Existing data structure and indexing techniques can be used to
implement a resource space system. The XML file can be used as the in-
termediate of storing resources. However, a special approach that makes
use of the characteristics of the Resource Space Model is needed. Chapter
6 presents an approach to the storage of resource space.

Question 6. Are resources stored in the resource space?

Answer 6. A resource space includes three parts: the structure of the space
including axes and their coordinates, the specification of the content (in-
cluding identity, path and semantic description) of resources, and the entity
resources. The strategy of storing these parts depends on the resource

50 Chapter 1 Resource Space Model Methodology

space system. Based on the Resource Space Model, different types of re-
source space systems can be developed.

Question 7. What is the relationship between the Resource Space Model
and the Knowledge Grid?
Answer 7. The original idea of the Knowledge Grid is for effective knowl-
edge sharing (Zhuge, 2002). Semantics is the basis for knowledge sharing.
The Resource Space Model is suitable for managing knowledge resources
by knowledge classification, for example, (concept, relation, axiom, rules,
method and theory) can be one axis, and discipline can be another axis of a
knowledge space. A decentralized Resource Space Model can be the un-
derlying infrastructure of the Knowledge Grid.

Question 8. What is the relationship between the Resource Space Model
and P2P networks?

Answer 8. P2P is a scalable decentralized resource management mecha-
nism. A resource space can be either centralized or decentralized. A one-
dimensional resource space can be implemented as a structured P2P net-
work by partitioning a set of resources and enabling a peer to manage a
class of resources. Semantic locality requires resources of the same class
to be stored in the same place or close places and managed by one peer. It
is an interesting issue to realize efficient routing in a multi-dimensional
P2P resource space. Chapter 8 and Chapter 9 present two solutions to con-
struct P2P resource spaces.

1.9 Summary

Like Yin-Yang in ancient Chinese philosophy, normalization and auton-
omy are two aspects of an ideal organization model. The Resource Space
Model represents the normalization. The Semantic Link Network repre-
sents the autonomy. Integration of the Resource Space Model and the Se-
mantic Link Network can form a semantic overlay with the characteristics
of normalization and autonomy.

A Resource Space Model can be distributed onto a network to meet the
needs of distributed applications. The method and technology of the dis-
tributed databases are good references in developing the distributed Re-
source Space Model.

The Resource Space Model can be deployed onto a peer-to-peer net-
work in a certain manner for decentralized applications. The peer-to-peer

1.9 Summary 51

Resource Space Model is a way to realize the synergy of normalization
and autonomy.

The storage of the resource space is to map the discrete multi-
dimensional resource space into a multi-dimensional index on a linear
storage space by using a specific index structure. The peer-to-peer com-
puting can be regarded as a decentralized storage mechanism that distrib-
utes a linear disk space onto a network.

This book arranges its content as follows:

Chapter 1 presents the general methodology of the Resource Space
Model. Readers can know its general idea, concept, characteristic and
method of the Resource Space Model. Readers could understand and start
to design resource spaces for applications after reading this chapter.

Chapter 2 investigates the relationship between the Resource Space
Model and the Semantic Link Network, and proposes an approach to inte-
grate the two models to construct a richer semantic overlay synergying the
normalization and autonomy for managing resources in the future inter-
connection environment.

Chapter 3 studies the expressiveness of query languages for Resource
Space Model and introduces the completeness and necessity theory for
query operations on resource spaces.

Chapter 4 introduces the algebra and calculus theory for the Resource
Space Model. They are important parts of the theory of the Resource
Space Model and the basis of its query language.

Chapter 5 analyzes the complexity of searching in the resource space. It
unveils the relationship between the searching efficiency and the number
of dimensions as well as the relationship between the searching efficiency
and the distribution of coordinates.

Chapter 6 introduces an approach to physically store the resource space
and its resources. The storage approach should reflect the characteristics
of the resource space and efficiently support flexible query.

The next two chapters are on a decentralized Resource Space Model.
Chapter 7 presents an approach to deploy the Resource Space Model onto
peer-to-peer network to obtain the scalability. Chapter 8 presents an ap-
proach to make use of classification semantics to improve the efficiency of
unstructured peer-to-peer network.

52 Chapter 1 Resource Space Model Methodology

Chapter 9 constructs the probabilistic Resource Space Model to deal
with uncertainty in applications by introducing the probability into the Re-
source Space Model. The motivation is similar to the fuzzy Resource
Space Model (Zhuge, 2004c). The probabilistic Resource Space Model can
be regarded as a more general Resource Space Model.

Classifying objects into categories at different granularity levels, estab-
lishing semantic links between known objects, and discovering semantic
clues between known and unknown objects are essential for understand-
ing. Incorporating the Resource Space Model and the Semantic Link Net-
work can form a semantic overlay synergy normalization and autonomy
for managing resources in the future interconnection environment.

2.1 The Basic Idea

The Semantic Web is to improve the World Wide Web by extending
HTML Web pages to descriptions with machine-understandable semantics,
better enabling computers and people to work in cooperation (Berners-Lee
et al., 2001; Heflin and Hendler, 2001). The success of the HTML guides
researchers to develop more powerful markup languages like the Resource
Description Framework (RDF, www.w3c.org/RDF), which is often used to
integrate various applications by using the eXtensible Markup Language
(XML) for syntax and URIs for naming (www.w3c.org/XML).

Grid computing research influences the development of the Semantic
Web from the computing ideal, infrastructure and model aspects (Foster,
2000, www-fp.mcs.anl.gov/~foster/). Artificial intelligence research influ-
ences the development of the Semantic Web towards a wisdom Web (Ho-
schek et al, 2000; Zhong et al, 2002).

Knowledge representation and logics are the basis of traditional artificial
intelligence. To introduce rules and description logics into the Semantic
Web is a natural idea to enable the Semantic Web to support intelligent
applications. An appropriate representation of semantics is also the key to
solve the service discovery and matching issues in the service-oriented
computing.

Chapter 2 A Semantic Overlay Integrating
Normalization with Autonomy

54 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

To find a good representation approach is only one aspect of realizing
the Semantic Web. Cross-domain understanding needs domain ontology.
However, how to efficiently organize, use and maintain the semantic con-
tent is a major challenge to realize an efficient Semantic Web.

Relational Data Base Model is a semantic model to effectively organize
and manage attribute-value semantics (Chen, 1976; Codd, 1970; Codd,
1971b). With the normal form theories, it ensures the efficiency and accu-
racy of operations on data (Mok, 2002; Ullman, 1988; William, 1983). But
the function dependence relationship between attributes of objects and the
relationship between attributes and values are limited in semantic ability to
organize and manage versatile resources in a large-scale dynamic inter-
connection environment.

Object-oriented databases and object-relational databases extend the ap-
plication scope of the relational databases by borrowing the advantages of
the object-oriented methodologies and programming languages like inheri-
tance and encapsulation to enable complex objects to be normally man-
aged (Abiteboul et al, 1995; Kim, 1990; Rumbaugh et al., 1991; Ullman,
1988). Several graph-based semantic models built on the traditional hierar-
chical and network data models have been proposed (Gyssens et al, 1994;
Levene and Loizou, 1995; Levene and Poulovassilis, 1990; Poulovassilis
and Levene, 1994). But, these data models are incapable of effectively
managing heterogeneous, distributed and ocean resources in a large, open
and dynamic network environment. Semantic rich data models are required
for achieving the efficiency and efficacy of resource management in the
future interconnection environment.

Human recognizes the objective world by classifying objects, establish-
ing links between known objects, and discovering clues between known
and unknown objects. Orthogonal classification is a way to normalize the
classification of resources. For example, people are used to finding books
in library by classifications on topics, publishers, or alphabets, which are
orthogonal with each other. If they are integrated into one classification
model as shown in Fig. 2.1, then people can locate a book by given three
coordinates of corresponding axes in the three-dimensional classification
space. Locating resources will be more efficient than only use one type of
classification or separately use these classifications. Further, semantic
links like citation relationships (e.g., “The Knowledge Grid” cites “Weav-
ing the Web” as shown in Fig. 2.1) and common-author relationships can
be established between books ⎯ the entries in nodes. The incorporation of
the classification semantics with the link semantics can form a richer se-
mantic image (overlay) for locating resources.

2.1 The Basic Idea 55

Fig.2.1. An example of integrating orthogonal classification semantics
with link semantics.

The Resource Space Model RSM is a semantic data model for uni-

formly, normally and effectively specifying and managing resources by
normalizing classification semantics (Zhuge, 2004a). Its theoretical basis
is the normal forms and integrity constraints on resources (Zhuge et al.,
2005c).

The characteristic of the Resource Space Model is the normalization on
classification semantics.

Semantic Link Network SLN is a semantic model that links resource de-
scriptions by semantic links (Zhuge, 2003). The SLN model supports se-
mantic representation, reasoning, execution, referential search, and nor-
malization. An SLN can represent any semantic relationships between
resources.

The characteristic of the SLN is its autonomy: any node (resource) can
 link to any semantic relevant node.

Topic

Alphabet

Cite

Weaving the Web

The Knowledge Grid

Grid Web T
W

World Scientific

Collins

Publisher

56 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

Are there any intrinsic rules between RSM and SLN? To know these
rules can better develop the theory of the semantic overlay for the future
interconnection environment.

2.2 Integrating Resource Space Model with Semantic Link
Network

A resource space is an n-dimensional space RS(X1, X2, … , Xn), where Xi =
{Ci1, Ci2, …, Cim} is an axis defined by a set of coordinates. A point p(C1,j1,
C2,j2, …, Cn,jn) is determined by the coordinate values at every axes. It can
uniquely determine a resource set, where each element is called a resource
entry. Point and resource entry are two fundamental operation units of the
Resource Space Model.

Fig.2.2 is an example of a 3-dimentional resource space Spec-Apart-
Gen(Specialization, Apartment, Gender) specifying the student informa-
tion of a college. Three axes are Specialization = {math, chemistry, phys-
ics}, Apartment = {1#, 2#, 3#} and Gender = {male, female}. Each point
denotes a class of students, for example, the point (math, 1#, male) repre-
sents all the male students who belong to the department of math and live
in apartment no.1 in this college. And each resource entry in this point cor-
responds to a student in the college.

Class hierarchy can be defined top-down from any coordinate at an axis.
Take Fig.2.2 for example, the coordinate chemistry on axis Specialization
is classified into g1, g2 and g3 in terms of grade, and then they can be fur-
ther classified according to class. The label of each node is determined by
a full path from the root, so the leaf node chemistry.g1.c1 can be distin-
guished from chemistry.g2.c1.

2.2 Integrating Resource Space Model with Semantic Link Network 57

Fig.2.2. A 3-dimentional Resource Space Spec-Apart-Gen.

A Semantic Link Network consists of a semantic node set Semantic-
Nodes, a semantic link set SemanticLinks and a reasoning rule set
SLNRules, denoted as <SemanticNodes, SemanticLinks, SLNRules>. Any
semantic link in the SemanticLinks is a binary relation between two seman-
tic nodes in the SemanticNodes. For any three semantic nodes A, B and C
in the semantic node set if there exist two semantic links A⎯α→B and
B⎯β→C in the semantic link set, and there exists a semantic link rule
X⎯α→Y, Y⎯β→Z ⇒ X⎯γ→Z (denoted as α⋅β=γ in simple) in the
SLNRules, then A ⎯γ→C can be derived out and added to SemanticLinks
(Zhuge, 2003). Two semantic link networks can be merged into one by
common nodes or by adding semantic links between nodes of different
networks.

Normal forms of the Semantic Link Network are to guarantee the cor-
rectness of its semantics and operations. For example, X−is-part-of→ Y and

X−isn’t-part-of→ Y may exist in the same Semantic Link Network because
different users may operate on the same Semantic Link Network. The fol-
lowing normal forms of Semantic Link Network are to resolve the redun-
dancy and inconsistency issues.

58 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

1. If there does not exist semantic-equivalent nodes in a given Semantic
Link Network, then we say that the Semantic Link Network is the first
normal form SLN (1NF-SLN).

2. If a Semantic Link Network is 1NF and there does not exist inconsis-
tent semantic links and duplicate semantic links between the same
pair of nodes, then we say that the Semantic Link Network is the sec-
ond normal form Semantic Link Network (2NF-SLN).

3. If a Semantic Link Network is a 2NF and there does not exist isolated
nodes (accessible from each other), then we say that the Semantic
Link Network is the third normal form Semantic Link Network (3NF-
SLN).

An ideal Semantic Link Network is a semantic “map” of distributed ver-
satile resources to enable people to autonomously publish, manage and
browse resources according to semantic links in the map.

Each resource defined in the Resource Space Model can have a mapping

image in the Semantic Link Network. The purpose is different from the
knowledge portals that only provide knowledge services (Mack et al.,
2001). Users can make and use the orthogonal classification semantics and
the link semantics according to their cognition on the real world. The or-
thogonal classification semantics can help users focus their operation des-
tination. The Semantic Link Network reflects the semantic clues between
versatile resources. The integration of the Resource Space Model and the
Semantic Link Network combines the classification semantics and rela-
tional semantics.

The normalization theories of Resource Space Model and Semantic
Link Network support a kind of single semantic point of accessing relevant
semantic content, i.e., single semantic image (Zhuge, 2004d). Knowledge
portals are difficult to realize this function. Abstract knowledge like tradi-
tional semantic network and rule base can be derived from the Semantic
Link Network by generalization, can be organized according to the or-
thogonal semantics in the up-level space, and thus enable the future inter-
connection environment to implement intelligent services.

A Global Semantic Overlay Grid can be built by integrating the Re-
source Space Model and Semantic Link Network as shown in Fig.2.3.

2.2 Integrating Resource Space Model with Semantic Link Network 59

Fig.2.3. Building a Semantic Overlay Grid by integrating the Resource
Space Model and the Semantic Link Network.

A local Semantic Overlay Grid has four layers: the entity layer, the local
Semantic Link Network, the local resource space layer, and the manage-
ment mechanism of the resource space and the Semantic Link Network.
The integration of the Resource Space Model and the Semantic Link Net-
work lays the foundation of the Local Semantic Overlay Grid. A normal-
ized Local Semantic Overlay Grid requires that both the Resource Space
Model and the Semantic Link Network satisfy the normal forms. The
Global Overlay Semantic Grid consists of many Local Semantic Overlay
Grids connected by the semantic links. A Normalized Global Semantic
Overlay Grid requires that all Local Semantic Overlay Grids are normal-
ized and that the global Semantic Link Network is normalized.

The Semantic Overlay Grid integrates the advantages of the normaliza-
tion (the normalization of both Resource Space Model and Semantic Link
Network) and self-organization (local Semantic Overlay Grids intercon-
nect with each other autonomously). The normalization reflects the opti-
mization ideal of the Grid.

60 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

2.3 Relationship between RSM and SLN

2.3.1 Transformation from Semantic Link Network to Resource
Space Model

Definition 2.1. For a Semantic Link Network SLN (N, SL), (1) if for some
nodes n1, n2∈ N (SLN), there exists a directed path p(n1, n2) from n1 to n2,
then we call n1 can reach n2; (2) if for any pair of nodes n1, n2∈ N (SLN), n1
can reach n2 or n2 can reach n1, then we call SLN (N, SL) is unilaterally
connected; (3) if for any n1, n2∈ N (SLN), n1 can reach n2 and n2 can reach
n1, then SLN (N, SL) is called strongly connected; and (4) let SLN′ be the
underlying undirected graph of SL (N, SL), then SLN (N, SL) is called
weakly connected if SLN′ is connected; (5) if at least one semantic link (or
can be derived from existing links) points from n1 to n2, we say that n2 is
semantically reachable from n1, and that n1 and n2 are accessible each other
by browsing (regardless of direction).

The weak connectedness is about the reachability of browsing. If we
have n1−α→n2, n2−α→n3 ⇒ n1−α→n3 (‘⇒’ means by implication), then
we say that α or the α-link is transitive, and that there exists a semantic
chain from n1 to n3. Then we can see that the unilateral and strong con-
nectness is about the reachability of the semantic links by induction.

Definition 2.2. A sub-graph SLN′ of SLN (N, SL) is called a (weak, unilat-
eral, strong) connected component of SLN (N, SL) if (1) SLN′ is (weakly,
unilaterally, strongly) connected; and (2) if SLN′′ is (weakly, unilaterally,
strongly) connected too, and SLN′∩ SLN′′≠Φ, then SLN′ ⊇ SLN′′, i.e.,
SLN′ is a maximal subset which is (weakly, unilaterally, strongly) con-
nected.

A semantic component can be viewed as a point in the high-level re-
source space, then we can get the corresponding high-level resource space
from a semantic link network as follows:

For a Semantic Link Network SLN (N, SL), let SLN ={C1, C2, …, Cm},
where Ci represents a strongly connected component of SLN and Ci ∩ Cj =
Φ. Then N (SLN) = ∪N(Ci), where N(Ci) denotes the nodes of Ci. A
strongly connected component of SLN stands for a certain semantics that
is independent from the semantics of other components. So a Semantic
Link Network can be transformed to a Resource Space Model by mapping

2.3 Relationship between RSM and SLN 61

the strongly connected components into the points in the space. Fig.5 de-
picts such a transformation.

A transformation from a Semantic Link Network to a resource space ex-
ists because:

There exists an n-dimensional semantic space RS(X1, X2, …, Xn) to rep-
resent the semantics of a Semantic Link Network. The simplest case is a
vector (C1, …, Cn).

For each strongly connected semantic component Ci of the SLN, we can
find projections on each axis x1, x2, …, xn, representing fine semantics on
those axes. Each axis takes the projection of C1, …, Cn on it as coordi-
nates.

Ci(x1, x2, …, xn) corresponds to a point in RS.

The rest points in RS can be assigned as null points.

Given a domain ontology, above steps can determine a resource space
RS(X1, X2, …, Xn) by mapping axis and its coordinates onto concepts in the
ontology hierarchy.

Fig.2.4. Transformation from a Semantic Link Network to a resource
space.

For a Semantic Link Network SLN ={C1, C2, C3, C4} shown in Fig.2.4,

Ci is the strong component, 1≤ i ≤4. Then, we can get the resource space
RS(X1, X2)= {p1, p2, p3, p4} (other two unfilled points represent null points).
We can see that when the high-level semantics are got in the resource

62 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

space, the low-level semantics such as p1→ p4, p3→ p4, p2→ p3, and p2→
p1 in the Semantic Link Network are lost.

Corollary 2.1. A 1NF Semantic Link Network (1NF-SLN) can be trans-
formed to a 1NF Resource Space Model (1NF-RSM).

Proof. If a Semantic Link Network is 1NF, then there do not exist seman-
tic-equivalent nodes in it. From the definition of the strongly connected
component, there should not exist the same strongly connected component
in the Semantic Link Network. Suppose RS is the high-level resource
space, then there should not exist the same sets of points in it. So, there
does not exist name duplication between coordinates at any axis in the re-
source space. Then the resource space is also the 1NF. 

Corollary 2.2. A 2NF Semantic Link Network (2NF-SLN) can be trans-
formed to a 2NF Resource Space Model (2NF-RSM).

Proof. If a Semantic Link Network is 2NF, then there do not exist incon-
sistent and duplicate semantic links between the same pair of nodes, this
guarantees that the strongly connected components of Semantic Link Net-
work are correct in semantics. Suppose {C1, C2, …, Cm} is the set of
strongly connected components of the Semantic Link Network SLN and RS
is the high-level resource space, then RS={ p1, p2, …, pm}, where pi corre-
sponds to Ci, 1≤ i ≤m. If RS is not the second-normal-form, then there exist
some points pi and pj are not independent from each other, i.e., R(Ci) ∩
R(Cj) ≠ Φ, which means Ci ∩ Cj ≠ Φ. This is not consistent with that Ci and
Cj are different strongly connected components in SLN, so the RS is also a
2NF-RSM. 

Corollary 2.3. A 3NF Semantic Link Network (3NF-SLN) can be trans-
formed to a 3NF Resource Space Model (3NF-RSM).

Proof. If a Semantic Link Network SLN is a 3NF, then there does not exist
isolated nodes (accessible from each other), therefore all the strongly con-
nected components of SLN are accessible from each other. Suppose RS is
the high-level resource space, we can get that any of its point are reachable
from others, then every axis Xi can represent all the resources in RS, which
is equivalent to that any two axes of RS are orthogonal with each other
(Zhuge et al., 2005c), so RS is also a 3NF. 

 The above three corollaries show that the normal forms of the Resource
Space Model and the Semantic Link Network have common properties in
solving the redundancy and inconsistency.

2.3 Relationship between RSM and SLN 63

2.3.2 Transformation from Resource Space to Semantic Link
Network and Correlations

There are multiple ways to transform a resource space to a Semantic Link
Network, but semantics may lose during transformation. So it is important
to ensure the semantic equivalence of the transformation. The following is
a semantically equivalent transformation. Fig.2.5 depicts the transforma-
tion process.

Fig.2.5. An example of semantically equivalent transformation.

Take nodes in the resource space as nodes in the Semantic Link Net-

work;

Define the semantic links between n1(x1, …, xn) and n2(y1, …, yn) as:

⎩
⎨
⎧
Φ

=>∈<
=

otherwise. ,
;or , if

),(i iiiii
ii

yxXyximp
yxSL

Where Xi is the axis of the resource space RS, and impi means that node

n1(x1, …, xn) implies n2(y1, …, yn) on the semantics of axis Xi. Then we can
get SL (SLN) from SL (SLN)=∪n1,n2∈N SL(n1, n2).

Because the semantic links are directed, SL(xi, yi) ≠SL(yi, xi) in most
cases. If xi = yi, then SL(xi, yi) =SL(yi, xi)= Impi. On the contrary, if SL(xi, yi)
= Impi and SL(yi, xi)= Impi, then xi = yi. It is clear that the link Impi is transi-
tive. For any node n(x1, x2, …, xn) in the resulting SLN (N, SL), we have
R(xi)=∪{R(yi)|SL(xi , yi) = Impi}. Then, from the steps of construction, it is
clear that the resulting SLN (N, SL) is semantically equivalent to the re-
source space RS (P, E).

64 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

In a resource space RS, an axis with hierarchical coordinates can be
transformed into an axis with flat coordinates if only the leaf nodes of each
hierarchy are considered. So here focuses on the flat cases. In this case, the
semantic link network SLN corresponds to resource space RS regularly.
For any two points p1(x1, x2, …, xn) and p2(y1, y2, …, yn) in RS, we have xi =
yi or R(xi)∩R(yi)=Φ, 1≤ i≤ n, i.e., both “xi implies yi” and “yi implies xi”
hold or neither hold. Correspondingly, for any two nodes n1(x1, x2, …, xn)
and n2(y1, y2, …, yn) in the SLN, SL(xi, yi) =SL(yi, xi)= Impi or SL(xi, yi)
=SL(yi, xi)= Φ, i.e., there are no semantic links between xi and yi.

Given a resource space RS, there is a semantically equivalent Semantic
Link Network SLN, so we can compare the normal forms of RS and the
corresponding SLN to study the correlations between the normal forms of
RSM and SLN.

Corollary 2.4. A 1NF-RSM can be transformed to a 1NF-SLN.

Proof. If RS is 1NF, then there does not exist name duplication between
coordinates at any axis, so there cannot be the same points in RS. Suppose
SLN is the corresponding semantic link network of RS, from N (SLN) =P
(RS), we can get that there does not exist semantic-equivalent nodes in
SLN, so SLN is also the 1NF. 

Corollary 2.5. A 2NF-RSM can be transformed to a 2NF-SLN.

Proof. If RS is a 2NF, then for any axis, any two coordinates are independ-
ent from each other. Suppose SLN is the corresponding semantic link net-
work of RS, then there do not exist semantic-equivalent nodes in SLN. And
for any pair of nodes n1(x1, x2, …, xn) and n2(y1, y2, …, yn) in the SLN, the
semantic links between them fall into two cases: SL(xi, yi) =SL(yi, xi)= Impi

or SL(xi, yi) =SL(yi, xi)= Φ, so there do not exist inconsistent semantic links
and duplicate semantic links between n1 and n2, i.e., the SLN is the 2NF. 

Corollary 2.6. A 3NF-RSM can be transformed to a 3NF-SLN.

Proof. If RS is a 3NF, then any two axes of it are orthogonal with each
other, in other words, every axis Xi can represent all the resources in RS,
formally, R(X1)=R(X2)=…=R(Xn) (Zhuge et al., 2005c), this guarantees that
any points in the form of { p(x1, x2, …, xn)| xi ∈Xi} are meaningful. Sup-
pose SLN is the corresponding semantic link network of RS, from N
(SLN)=P (RS), we have: any nodes in SLN in the form of { n(x1, x2, …, xn)|
xi ∈Xi} are also meaningful. Then, for any two nodes n1(x1, x2, …, xn) and
n2(y1, y2, …, yn) in the SLN, if there exists some i, 1≤i≤n, such that xi=yi,
then SL(xi, yi) =SL(yi, xi)= Impi, then n1 and n2 can be accessed from each

2.3 Relationship between RSM and SLN 65

other. Else if xi≠yi, for 1≤i≤n hold, let n3= n3(x1, x2, …, xn-1, yn), from x1≠y1
and xn≠yn, we can get n3 ≠ n1 and n3≠ n2. Then there exist semantic links
n1−Imp1→ n3, and n3−Impn→n2, so n1 and n2 can also be accessed from
each other by the chain n1−Imp1→ n3−Impn→n2. So any two nodes in the
SLN are accessible from each other, i.e., the SLN is the third-normal-form.


 The above three corollaries further confirm that the normal forms of the
Resource Space Model and the Semantic Link Network have the common
properties in solving the redundancy and inconsistency.

2.3.3 Topological Properties

Just as the quotient resource space defined in (Zhuge et al., 2005c), the
quotient Semantic Link Network is the abstract of the original Semantic
Link Network, and it reflects the higher level semantics. Here we will
prove that the quotient Semantic Link Network keeps the three normal
forms of the original one, which shows that the quotient Semantic Link
Network is a “good” Semantic Link Network.

Definition 2.3. For a Semantic Link Network SLN (N, SL), if there exists
an equivalent relation R on the set of nodes N (SLN), then the quotient Se-
mantic Link Network of SLN (N, SL) is defined as SLN ′(N ′, SL′), where N
′(SLN′)= N (SLN)/R={C1, C2, …, Cm}, where Ci is an equivalent class in N
(SLN) under the relation R; and, SL′(Ci, Cj)=∪{ SL(ni, nj) | ni, nj ∈ N (SLN)
and ni∈Ci, nj∈Cj }, 1≤ i, j ≤m.

Theorem 2.1. Let SLN (N, SL) be a Semantic Link Network, and SLN ′(N
′, SL′) is the quotient Semantic Link Network constructed as above, then
SLN′(N ′, SL ′) keeps the three normal forms of SLN (N, SL).

Proof. (1) If SLN is 1NF, then there do not exist semantic-equivalent
nodes in it. For the quotient network SLN′(N′, SL′), N′(SLN′)= N
(SLN)/R={C1, C2, …, Cm}. According to the definition of the equivalence
relation R, Ci ∩ Cj=Φ, 1≤ i, j ≤m. So there do not exist semantic-equivalent
nodes in SLN ′(N ′, SL ′), which means that SLN ′(N ′, SL ′) is also 1NF. (2)
If SLN is 2NF, then there do not exist inconsistent semantic links and du-
plicate semantic links between the same pair of nodes in SLN. According
to the construction process of the quotient Semantic Link Network, SL ′(Ci,
Cj)=∪{SL(ni, nj) | ni, nj ∈ N (SLN) and ni∈Ci, nj∈Cj }, we can get that SL
′(SLN ′)⊆ SL (SLN), so there do not exist inconsistent semantic links and
duplicate semantic links, in SLN ′(N ′, SL′) either, which means that SLN

66 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

′(N ′, SL′) is also 2NF. (3) If SLN is 3NF, then there do not exist isolated
nodes (accessible from each other), that is for any two nodes ni, nj ∈ N
(SLN), there exists a path ni n1 … nt nj from ni to nj. Then in the case of
SLN′, for any two nodes Ci, Cj ∈ N ′(SLN ′), then there exists ni, nj ∈ N
(SLN) and ni∈Ci, nj∈Cj. Then we can consider the series S=Ci C1 … Ct Cj,
where Ck is the corresponding equivalence class of nk, which means that
nk∈Ck, 1≤ k ≤t. Then in the series S, (a) if any two neighboring nodes Ck,
Cp in it satisfying Ck ≠ Cp, then S is a path from Ci to Cj ; (b) if there exists
two neighboring nodes Ck=Cp in S, then we get a new series S ′ in which Ck
Cp is Ck. Repeating this process finite times, we can get a new series S ′
with the property that any two neighboring nodes in it are not equal, so S ′
is a path, and obviously that it is from Ci to Cj. From (a) and (b), we can
get that any two nodes in N ′(SLN ′) are accessible from each other, so SLN
′(N ′, SL ′) is 3NF. 

 We have proposed a method to transform a given Semantic Link Net-
work to a resource space. In fact, the transformation process is to construct
a quotient Semantic Link Network first, then to get the corresponding re-
source space from the quotient Semantic Link Network. According to the
construction process and the definition of the quotient semantic link net-
work, we only need to show that the “strongly connected component” is an
equivalent relation among the nodes of the Semantic Link Network.

Corollary 2.7. Let SLN (N, SL) be a Semantic Link Network, and R be the
relation that “in the same strongly connected component” on N (SLN), then
R is an equivalent relation on N (SLN).

 Because the quotient Semantic Link Network is the abstraction of the
original Semantic Link Network, the construction process shows again that
the resource space is the abstraction of the Semantic Link Network, re-
flects the higher-level semantics.

 Given a resource space RS, we have constructed a Semantic Link Net-
work SLN (N, SL) that is semantically equivalent to it, if we view SLN (N,
SL) as the underlying undirected graph, then we can study the topological
properties of it. Here we always assume that RS is 2NF and its coordinates
are flat.

 Let the weight on each edge −Impi→ be 1, 1≤ i≤ n, then we can define
the distance and diameter of SLN as (Bollobás, 1998).

Definition 2.4. For any two nodes n1 and n2 in SLN (N, SL), the distance
d(n1, n2) between n1 and n2 is the length of the shortest path between them.

2.3 Relationship between RSM and SLN 67

Definition 2.5. The diameter of the graph SLN (N, SL) is D(SLN)= Max{
d(n1, n2)| n1, n2∈N (SLN)}.

 For any two points p1(x1, x2, …, xn) and p2(y1, y2, …, yn) in the resource

space RS(X1, X2, …, Xn), the distance 2
1

1

2
21)),((),(∑

=

=
n

i
iii yxdppd , where di

is the distance on axis Xi, 1≤i≤n (Zhuge et al., 2005c). We can see that the
distance d on RS is the Euclidian sum of di, and from Definition 2.4, the
distance on SLN is equivalent to d=Min{di |1≤i≤n}. As the existence of the
semantic links, the distance between two nodes in SLN is much smaller
than in the RS. From this perspective, the SLN is more suitable for the
search and location of resources. The following theorem supports this
view.

Theorem 2.2. Let RS be a 3NF resource space, and SLN (N, SL) is the cor-
responding Semantic Link Network, then SLN is an Euler graph, and the
diameter of it is 2.

Proof. Since RS is 3NF, from Corollary 2.3, the SLN is 3NF too, then any
two nodes in it are accessible from each other, i.e., SLN is a connected
graph. For any node n in SLN, the edges −Impi→ and ←Impi− are present
or absent simultaneously, so the degree of n is even. Because the degree of
every node in SLN is even, it is an Euler graph. Suppose the distance d(n1,
n2) between two nodes n1(x1, x2, …, xn) and n2(y1, y2, …, yn) is the biggest
in SLN, then D(SLN)= d(n1, n2). Then xi≠yi, for 1≤i≤n. Else if xi=yi for
some i, then there exists edge −Impi→ between n1 and n2 such that d(n1,
n2)=1. Let n3= n3(z1, z2, …, zn), satisfying xi≠zi, for 1≤i≤n, then there dose
not exist any semantic link between n1 and n3, so d(n1, n3)>1= d(n1, n2),
this is inconsistent with the assumption that d(n1, n2) is the biggest. So
xi≠yi, for 1≤i≤n holds and therefore d(n1, n2)> 1. Let n4= n4(x1, x2, …, xn-1,
yn), from x1≠y1 and xn≠yn, we can get n4 ≠ n1 and n4≠ n2. Then there exist
edges n1−Imp1→ n4, and n4 −Impn→n2, so n1 and n2 are linked by the path
n1−Imp1→ n3−Impn→n2, from the definition of d(n1, n2), we can get that
d(n1, n2)≤ 2. And from d(n1, n2)> 1, we have d(n1, n2)=2. So D(SLN)= d(n1,
n2)=2. 

Theorem 2.2 implies that the distance between any two nodes in the
3NF (corresponding to a resource space) is either 1 or 2. And from Theo-
rem 2.2 we can get the following corollary:

Corollary 2.8. Let RS be a 3NF resource space, and SLN (N, SL) is the
corresponding Semantic Link Network, then for any two nodes n1(x1, x2,

68 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

…, xn) and n2(y1, y2, …, yn) in SLN, d(n1, n2)=1⇔ “there exists some i,
1≤i≤n, such that xi=yi”. And d(n1, n2)=2 ⇔ xi≠yi, for 1≤i≤n.

 Then we can see that the mean distance between two nodes in SLN is
within 1 and 2, much smaller than in the resource space RS, which is re-
lated to the dimension n and the average number of coordinates on all
axes, so we can say that the Semantic Link Network is more suitable for
search and location of resources than Resource Space Model. But there is
one more important factor that makes the distance in the Semantic Link
Network much smaller, which is that there are too much semantic links in
the corresponding Semantic Link Network constructed.

2.4 Union View of Resource Space and Semantic Link
Network

Integrating the Resource Space Model’s classification semantics with the
Semantic Link Network’s link semantics supports richer semantic model-
ing and applications. To facilitate the cooperation between the Resource
Space Model and the Semantic Link Network, we propose the Union View
of the Resource Space Model and the Semantic Link Network by introduc-
ing a structure called Resource Class Hierarchy, which can be derived
from the Resource Space Model. The Union View has the following three
advantages:

1. Providing an efficient mapping mechanism from the Resource Space
Model to the Semantic Link Network;

2. Facilitating quick and easy modeling of Semantic Link Network; and,
3. Enhancing the interoperability between Semantic Link Networks.

2.4.1 The Framework

Fig.2.6 describes the cooperation between the Resource Space Model and
the Semantic Link Network for a simple teaching system. A node in this
graph represents a resource or a set of resources. The dotted circles repre-
sent resource class hierarchies, each of which corresponds to a resource
space. The rectangles in dotted circles denote the resource classes corre-
sponding to a class of resources in the Resource Space Model. Both the
circle and the triangle represent generic classes defined in the original Se-
mantic Link Network. And the rounded rectangles denote the printable
classes, the system-defined classes similar to the basic types in program-
ming languages (Hull and King, 1987; Ullman, 1988). Using the printable

2.4 Union View of Resource Space and Semantic Link Network 69

classes, the atomic value of attributes can be precisely represented. The
only String class has three duplications for clarity. The edges and edge la-
bels in this graph are used to represent the relationships between nodes.
Note that the edges without labels in the dotted circles represent the inclu-
sion relationships between resource classes.

Fig.2.6 has two resource class hierarchies: Human-Resource and Score-
Course derived from the corresponding resource spaces Human-Resource
and Score-Course in the RSM. The resource space Human-Resource is
used to store the information about all teachers and students. And the re-
source space Score-Course is used to manage the information about the
test scores of the students.

Definition 2.6. The Union View of the Resource Space Model and the
Semantic Link Network is a triple S = (VE, RE, RCH), where VE is a finite
set of nodes in the Union View which could include resources, generic
classes, printable classes and resource classes derived from the Resource
Space Model; RE is a finite set of triple <v1, v2, re>, where re represents
the relationship between nodes v1 and v2 coming from VE; and, RCH is a
finite set of resource class hierarchies each of which corresponds to a re-
source space in the meaning of the Resource Space Model.

Fig.2.6. Example of incorporating Semantic Link Network with the re-

source space.

The Union View has the following three advantages:

70 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

(1) The Union View provides an efficient mapping mechanism from Re-
source Space Model to Semantic Link Network. The Semantic Link Net-
work is a general-purpose semantic-rich model for the representation of re-
sources and can provide a semantic overlay for many data models in the
style of map. Since each resource class hierarchy corresponds to a re-
source space, by introducing the resource class hierarchies into the origi-
nal Semantic Link Network, the Union View provides an efficient and ef-
fective mapping from the Resource Space Model to the Semantic Link
Network. The efficiency and effectiveness of the mapping depend on the
following two points:

a) The Union View of Resource Space Model and Semantic Link
Network increases the granularity of the mapping from Resource
Space Model to Semantic Link Network. In the original Semantic
Link Network, each resource defined in the Resource Space Model
has a mapping image in the Semantic Link Network. However in
the Union View, a point, an axis and even a resource space in the
Resource Space Model can be mapped to a node in the Semantic
Link Network. Thus, many operations can be applied to a batch of
resources.

b) The Union View of Resource Space Model and Semantic Link
Network provides not only resource mappings but also operation
mappings from the Resource Space Model to the Semantic Link
Network.

(2) The Union View of Resource Space Model and Semantic Link Network
makes use of the Resource Space Model to make the Semantic Link Net-
work modeling easier. Many traditional methods such as entity-relation
model can be used to help modeling with the Semantic Link Network
(Chen, 1976). Since quick and easy modeling is one of the salient features
of the Resource Space Model, the resource class hierarchies in the Union
View make the Semantic Link Network modeling easier without conflict-
ing with other approaches.

(3) The Union View of the Resource Space Model and the Semantic Link
Network can enhance the interoperability between Semantic Link Net-
works. Semantic Link Network operations are mainly based on the struc-
ture information. The Union View has introduced some new RSM-based
operations, which emphasize on not only the structure but also the seman-
tics of Semantic Link Networks. Thus, the Union View of Resource Space
Model and Semantic Link Network can enhance the interoperability be-
tween Semantic Link Networks.

2.4 Union View of Resource Space and Semantic Link Network 71

2.4.2 The Core Component of Union View: Resource Class
Hierarchy

We use δ to represent a resource space, an axis, a point or a coordinate of
the RSM and R(δ) represents the resources that δ can contain. Let RS(X1,
X2, … , Xn) be a resource space. Its axes Xi = {Ci1, Ci2, …, Cim} can be ex-
tended to Xi

* = {Ci1, Ci2, …, Cim, πi}, 1≤i≤n. A point taking the coordinate
value πi on the axis Xi means that the axis Xi has no restriction on that
point. For example, if a student belongs to the point (πSpecialization, 3#, male)
in the resource space Spec-Apart-Gen, then he/she may major in math,
chemistry, physics or any other specialization. Meanwhile, we introduce a
constant γi at each axis Xi that is equivalent to the union of Ci1, Ci2, …, Cim
in semantics, i.e. R(γi) = R(Ci1) ∪ R(Ci2) ∪ …∪ R(Cim). Thus, we say that
γi is derived from Ci1, Ci2, …, Cim. So R(γi) ⊆ R(πi) holds.

Definition 2.7. Let RS(X1, X2, … , Xn) be a resource space and Xi
*, 1≤i≤n

be its extended axes. The set of resources represented by (π1, …, πi-1, γi,
πi+1,…, πn) is defined as the axis resource class of axis Xi, denoted as aci.
Axis resource class and each relation in the Cartesian product X1

* × X2
* ×

…× Xn
* are generally called resource classes. Particularly, the relation (π1,

π2, …, πn) is called base resource class, denoted as rootRS.

In fact, the resource class (C1,j1, C2,j2, …, Cn,jn) is the set of resources
which simultaneously satisfies all the conditions C1,j1, C2,j2, …, and Cn,jn on
corresponding axes in the resource space. And the base resource class (π1,
π2, …, πn) actually represents the whole resource space. Take the resource
space Spec-Apart-Gen as an example, the base resource class (πSpecialization,
πApartment, πGender) denotes all the students concerned by this resource space.
Regardless the gender, the resource class (physics, 3#, πGender) represents
all the students who are major in physics and live in 3# apartment.

For any two resource classes c = (C1,j1, C2,j2, …, Cn,jn) and c′ = (C1,j1′,
C2,j2′, …, Cn,jn′) in a resource space, if R(C1,j1) ⊆ R(C1,j1′), R(C2,j2) ⊆
R(C2,j2′), …, R(Cn,jn) ⊆ R(Cn,jn′) hold respectively, then the resource class c
is called the subclass of the resource class c′ and the resource class c′ is
called the superclass of the resource class c. And this inclusion relationship
is denoted as c ⊆c c′.

The inclusion relationship existing between c and c′ is a particular case
of the subtype relationship defined in (Zhuge, 2003). Since the inclusion
relationship exists only between resource classes in the resource class hi-
erarchy, for the sake of representation simplicity we also name the inclu-

72 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

sion relationship as the internal relationship and any other relationships as
external relationships.

Theorem 2.3. Let RS(X1, X2, … , Xn) be a resource space and Xi
* (1≤i≤n)

be its extended axes. Any axis resource class aci of axis Xi is one of the
subclasses of the base resource class rootRS of RS. And the axis resource
class aci is one of the super-classes of any of the resource classes (x1, …,
xi-1, xi, xi+1…, xn), where xj belongs to Xj

* (1≤j≤ i−1 or i+1≤j≤n) and xi be-
longs to Xi.

Proof. (1) For the axis resource class aci = (π1, …, πi-1, γi, πi+1,…, πn) and
the base resource class rootRS = (π1, π2,…, πn), we have R(π1) ⊆ R(π1), …,
R(πi-1) ⊆ R(πi-1), R(γi) ⊆ R(πi), R(πi+1) ⊆ R(πi+1), …R(πn) ⊆ R(πn) hold re-
spectively. So the axis resource class aci is one of the subclasses of the
base resource class rootRS. (2) For any resource class c = (x1, …, xi-1, xi,
xi+1…, xn) in RS where xj belongs to Xj

* (1≤j≤i−1 or i+1≤j≤n) and xi be-
longs to Xi. It is obvious that c is one of the subclasses of the resource
class c′ = (π1, …, πi-1, xi, πi+1…, πn). According to the definition of γi, we
have R(xi) ⊆ R(γi). Thus c′ is one of the subclass of aci. So the axis re-
source class aci is one of the superclasses of the resource class (x1, …, xi-1,
xi, xi+1…, xn). 

Theorem 2.3 indicates that the introduction of axis resource classes will
not break the inclusion relationships in the resource class hierarchy of a
certain resource space. The resource class set of the resource class hierar-
chy is defined as follows:

Definition 2.8. Let RS(X1, X2, … , Xn) be a resource space and Xi
*(1≤i≤n)

be its extended axes. The set CS = X1
* × X2

* × …× Xn
* ∪ {(π1, …, πi-1, γi,

πi+1, …, πn) | 1≤ i≤n} is called the resource class set of RS.

In the resource class hierarchy of a given resource space, only the in-
clusion relationships between resource classes are concerned. The inclu-
sion relationship is reflexive, asymmetric and transitive, and it supports
multi-inheritance. Thus, the resource class hierarchy of a given resource
space can be viewed as a directed graph consisting of its resource class set
and these inclusion relationships. In a directed graph, Γ(v1, v2, …, vn) will
be used to denote one path from v1 to vn. The resource class hierarchy of a
given resource space can be defined as follows:

Definition 2.9. Let RS(X1, X2, … , Xn) be a resource space. The resource
class hierarchy of RS is defined as the directed graph RSG(CS, E), where
1. CS is the resource class set of RS;
2. For any resource classes c1, c2 ∈CS, if <c1, c2>∈ E, then c2⊆cc1 holds;

2.4 Union View of Resource Space and Semantic Link Network 73

3. For any resource classes c1, c2 ∈CS, if c2 ⊆c c1 holds, then there exists
at least one path Γ(c1, cj1, cj2, …, cjm, c2).

The second condition in definition 2.9 is used to guarantee that RSG(CS,
E) can only include the valid inclusion relationships in RS. And the third
condition implies that all inclusion relationships in RS should be implicitly
included in RSG(CS, E). Fig.2.7 is the illustration of a flat resource space
and a part of its resource class hierarchy.

Fig.2.7. A flat resource space and a part of its resource class hierarchy.

74 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

2.4.3 Operations on Resource Class Hierarchy

The Resource Space Model’s Join, Disjoin, Merge and Split operations can
also be applied to the Resource Class Hierarchy. The following theorem
defines the Join operation on resource class hierarchies of resource spaces:

Theorem 2.4. Let RS1(X1, …, Xt, Xt+1, …, Xm) and RS2(Xt+1, …, Xm, Xm+1,
…, Xn) be two resource spaces that can be joined together to form the re-
source space RS(X1, …, Xt, Xt+1, …, Xm, Xm+1, …, Xn). Assume that
RSG1(CS1, E1) and RSG2(CS2, E2) are the resource class hierarchies of RS1
and RS2 respectively. We construct the directed graph RSG(CS, E) such
that:
(1) CS = X1

* × X2
* × … × Xn

* ∪ {(π1, …, πi-1, γi, πi+1, …, πn) | 1≤ i≤n};
(2) For any two classes c = (C1, …, Ct, Ct+1, …, Cm, Cm+1, …, Cn) and c′ =
(C1′, …, Ct′, Ct+1′, …, Cm′, Cm+1, …, Cn′) in CS, <c, c′> ∈ E holds if and
only if both <(C1, …, Ct, Ct+1, …, Cm), (C1′, …, Ct′, Ct+1′, …, Cm′)> ∈ E1
and <(Ct+1, …, Cm, Cm+1, …, Cn), (Ct+1′, …, Cm′, Cm+1′, …, Cn′)> ∈ E2 hold.

Then, the directed graph RSG(CS, E) is the resource class hierarchy of
resource space RS.

Proof. According to the definition 2.8, it is obvious that CS is the resource
class set of resource space RS. We will prove that E satisfies the last two
conditions mentioned in definition 2.9.

(1) For any two resource classes c = (C1, …, Ct, Ct+1, …, Cm, Cm+1, …, Cn)
and c′ = (C1′, …, Ct′, Ct+1′, …, Cm′, Cm+1′, …, Cn′) in CS, if <c, c′> ∈ E
holds, then <(C1, …, Ct, Ct+1, …, Cm), (C1′, …, Ct′, Ct+1′, …, Cm′)> ∈ E1
and < (Ct+1, …, Cm, Cm+1, …, Cn), (Ct+1′, …, Cm′, Cm+1′, …, Cn′)> ∈ E2
hold. Since RSG1(CS1, E1) and RSG2(CS2, E2) are the resource class hier-
archies of RS1 and RS2 respectively, R(C1) ⊆ R(C1′), R(C2) ⊆ R(C2′), …,
R(Cn) ⊆ R(Cn′) hold. So c ⊆c c′ holds.

(2) For any two resource classes c = (C1, …, Ct, Ct+1, …, Cm, Cm+1, …, Cn)
and c′ = (C1′, …, Ct′, Ct+1′, …, Cm′, Cm+1′, …, Cn′) in CS, if c′ ⊆c c holds,
we can prove that there exists one path from c to c′ in RSG(CS, E).
Clearly, both (C1, …, Ct, Ct+1, …, Cm) ⊆c (C1′, …, Ct′, Ct+1′, …, Cm′) and
(Ct+1, …, Cm, Cm+1, …, Cn) ⊆c (Ct+1′, …, Cm′, Cm+1′, …, Cn′) hold. Let xi
(t+1≤i≤m) be a coordinate from the axis Xi (t+1≤i≤m). And this coordinate
satisfies: R(Ci′) ⊆ R(xi) ⊆ R(Ci) and there does not exist a coordinate xi′
such that both R(xi) ⊆ R(xi′) ⊆ R(Ci) and xi ≠ xi′ hold. Thus, both <(C1, …,
Ct, Ct+1, …, Cm), (C1, …, Ct, xt+1, …, xm)> ∈ E1 and <(Ct+1, …, Cm, Cm+1,
…, Cn), (xt+1, …, xm, Cm+1, …, Cn)> ∈ E2 hold. So <c, (C1, …, Ct, xt+1, …,

2.4 Union View of Resource Space and Semantic Link Network 75

xm, Cm+1, …, Cn)> ∈ E holds. By analogy, through limited steps we can
construct one path from c to c′ in RSG(CS, E).

According to 1) and 2), we can conclude that the directed graph
RSG(CS, E) is the resource class hierarchy of resource space RS. 

According to theorem 2.4, the resource class hierarchy of resource space
RS deriving from the Join operation of resource spaces RS1 and RS2 can be
easily constructed.

The Disjoin operation on the resource class hierarchy of a given re-
source space complies with the following theorem.

Theorem 2.5. Let RS1(X1, …, Xt, Xt+1, …, Xm) and RS2(Xt+1, …, Xm, Xm+1,
…, Xn) be two resource spaces which derive from the Disjoin operation on
the resource space RS(X1, …, Xt, Xt+1, …, Xm, Xm+1, …, Xn). Assume that
RSG(CS, E) is the resource class hierarchy of RS. We construct the di-
rected graph RSG1(CS1, E1) such that:
(1) CS1 = X1

* × X2
* × … × Xm

* ∪ {(π1, …, πi-1, γi, πi+1, …, πm) | 1≤ i≤m};
(2) For any two resource classes c = (C1, …, Ct, Ct+1, …, Cm) and c′ = (C1′,
…, Ct′, Ct+1′, …, Cm′) in CS1, <c, c′> ∈ E1 holds if and only if there exists
at least a pair of resource classes (C1, …, Ct, Ct+1, …, Cm, Cm+1, …, Cn) and
(C1′, …, Ct′, Ct+1′, …, Cm′, Cm+1′, …, Cn′) in RSG(CS, E) such that <(C1,
…, Ct, Ct+1, …, Cm, Cm+1, …, Cn), (C1′, …, Ct′, Ct+1′, …, Cm′, Cm+1′, …,
Cn′)> ∈ E holds.

Then, the directed graph RSG1(CS1, E1) is the resource class hierarchy
of resource space RS1.

Proof. We prove that RSG1(CS1, E1) satisfies the three conditions as the
resource class hierarchy of resource space RS1 as follows:
(1) According to the definition of the resource class set of a given resource
space, it is obvious that CS1 is the resource class set of resource space RS1.
(2) For any two resource classes c = (C1, …, Ct, Ct+1, …, Cm) and c′ = (C1′,
…, Ct′, Ct+1′, …, Cm′) in CS1, if <c, c′> ∈ E1 holds, then there exists one
pair of resource classes (C1, …, Ct, Ct+1, …, Cm, Cm+1, …, Cn) and (C1′, …,
Ct′, Ct+1′, …, Cm′, Cm+1′, …, Cn′) in RSG(CS, E) such that <(C1, …, Ct,
Ct+1, …, Cm, Cm+1, …, Cn), (C1′, …, Ct′, Ct+1′, …, Cm′, Cm+1′, …, Cn′)> ∈ E
holds. Thus, R(C1) ⊆ R(C1′), R(C2) ⊆ R(C2′), …, R(Cm) ⊆ R(Cm′) hold. It
is obvious that c ⊆c c′ holds.
(3) Suppose that two resource classes c1 = (C1, …, Ct, Ct+1, …, Cm) and c1′
= (C1′, …, Ct′, Ct+1′, …, Cm′) in CS1 satisfy c1 ⊆c c1′. There exist two re-
source classes c and c′ in CS such that they have common coordinates on
X1, X2, …, and Xm with c1 and c1′ respectively and c ⊆c c′ holds. So there

76 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

must exist one path Γ(c, v1, v2, …, vp, c′) connecting c with c′ in RSG(CS,
E). For any vi (1≤i≤p), there must exist a class vi′ in CS1 such that vi′ has
common coordinates on X1, X2, …, Xm with vi. Thus, there must exist the
path Γ(c1, v1′, v2′, …, vp′, c1′) connecting c1 with c1′ in RSG1(CS1, E1).

According to 1), 2) and 3), we have: the directed graph RSG1(CS1, E1) is
the resource class hierarchy of resource space RS1. 

Theorem 2.5 provides a method to obtain the resource class hierarchy of
a resource space deriving from the Disjoin operation on another resource
space.

The following theorem defines the Merge operation on resource class
hierarchies of resource spaces:

Theorem 2.6. Let RS1(X1, X2, …, Xm, X′) and RS2(X1, X2, …, Xm, X″) be
two resource spaces that can be merged into a resource space RS(X1, X2,
…, Xm, X) by merging X′ and X″ into X. Assume that RSG1(CS1, E1) and
RSG2(CS2, E2) are the resource class hierarchies of RS1 and RS2 respec-
tively and that ac, ac′ and ac″ are the axis resource classes corresponding
to axes X, X′ and X″ respectively. We construct the directed graph
RSG(CS, E) that satisfies:
1. CS = CS1 ∪ CS2 ∪ {ac} – {ac′, ac″}; and,
2. E = E1 ∪ E2 ∪ {<ac, c> | <ac′, c> ∈ E1 or <ac″, c> ∈ E2} ∪ {<c, ac>

| <c, ac′> ∈ E1 or <c, ac″> ∈ E2} – {<ac′, c> | <ac′, c> ∈ E1} – {<ac″,
c> | <ac′, c> ∈ E2}.

If RS is in 2NF, then the directed graph RSG(CS, E) is the resource
class hierarchy of resource space RS.

Proof. Let CS* be the resource class set of RS.

(1) Assume that the resource class c = (C1,i1, C2, i2, …, Cm,im, C) ∈ CS
holds. If c equals to either ac or the base resource class of RS, then c ∈
CS* holds. Otherwise, either c ∈ CS1 or c ∈ CS2 holds. Thus the coordinate
C is on either X′ or X″. So we conclude that the coordinate also belongs to
X. It is obvious that c ∈ CS*. So CS ⊆ CS* holds. For any resource class c
= (C1,i1, C2, i2, …, Cm,im, C) ∈ CS*, If c is equal to either ac or the base re-
source class of RS, then c ∈ CS holds. Otherwise, the coordinate C must
be on X. Thus the coordinate C is on either X′ or X″. So either c ∈ CS1 or c
∈ CS2 holds. It is obvious that c ∈ CS. So CS* ⊆ CS holds. Thus, we have
CS = CS* holds. So CS is the resource class set of RS.
(2) It is easy to prove that for any <c, c′> ∈ E, c ⊆c c′ holds. For any two
resource classes c and c′ in RS that satisfy c ⊆c c′, we will prove that there

2.4 Union View of Resource Space and Semantic Link Network 77

exists one path from c′ to c in RSG(CS, E) (here excludes the case where c
is equal to c′): (a) Firstly, we suppose that c ∈ CS1 holds. If c′ is equal to
ac, then we can conclude that c ⊆c ac′ holds. So there must exist one path
Γ(ac′, v1, v2, …, vp, c) from ac′ to c in RSG1(CS1, E1). Thus, the path Γ(ac,
v1, v2, …, vp, c) must exist in RSG(CS, E). If c′ is not equal to ac, c′ ∈ CS1
must hold. Otherwise, the RS arising from the merge of RS1 and RS2 can-
not be in 2NF. So there must exist a path Γ(c′, v1, v2, …, vp, c) from c′ to c
in RSG1(CS1, E1). There must exist a path Γ′ from c′ to c in RSG(CS, E)
which is obtained by replacing ac′ with ac in Γ(c′, v1, v2, …, vp, c). (b)
Similarly, we can draw the same conclusion when c′ ∈ CS1 holds.

According to 1) and 2), we can conclude that the directed graph
RSG(CS, E) is the resource class hierarchy of resource space RS. 

The Split operation on the resource class hierarchy of a given resource
space complies with the following theorem.

Theorem 2.7. Let RS1(X1, X2, …, Xm, X′) and RS2(X1, X2, …, Xm, X″) be
two resource spaces deriving from the Split operation on the resource
space RS(X1, X2, …, Xm, X) in 2NF. Assume that RSG(CS, E) is the re-
source class hierarchy of RS and that ac, ac′ and ac″ are the axis resource
classes of axes X, X′ and X″ respectively. We construct the directed graph
RSG1(CS1, E1) satisfying:
1. CS1 = X1

* × X2
* × … × Xm

* × X′* ∪ {(π1, …, πi-1, γi, πi+1, …, πm, π) |
1≤ i≤m} ∪ ac′; and,

2. E1 = {<c, c′> | c∈CS1 ∧ c′∈CS1 ∧ <c, c′>∈E} ∪ {<ac′, c> | c∈CS1 ∧
<ac, c>∈E} ∪ {<c, ac′> | c∈CS1 ∧ <c, ac>∈E}.

Then, the directed graph RSG1(CS1, E1) is the resource class hierarchy
of resource space RS1.

Semantic Link Network

The Union View of resource space and Semantic Link Network not only
maps resource spaces into resource class hierarchies but also inherits all
operations of the RSM. The informal description of the four RSM-based
operations on the Union View is as follows:

Join: Assume that RSG1(CS1, E1) and RSG2(CS2, E2) are two resource
class hierarchies which correspond to the resource spaces RS1(X1, …, Xt,
Xt+1, …, Xm) and RS2(Xt+1, …, Xm, Xm+1, …, Xn) respectively. And
RSG(CS, E) is derived from the Join operation on RSG1(CS1, E1) and
RSG2(CS2, E2) with axes Xt+1, …, Xm as described in theorem 2.4. For any

2.4.4 Operations on the Union View of Resource Space and

78 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

resource class c1 = (C1, …, Ct, Ct+1, …, Cm) in RSG1(CS1, E1), there must
exist the corresponding resource class c = (C1, …, Ct, Ct+1, …, Cm, πm+1,
…, πn) in RSG(CS, E) according to the definition of resource class hierar-
chy. Then, any external relationships starting from or ending at c1 should
be transferred to c.

Disjoin: Assume that RSG(CS, E) is a resource class hierarchy corre-
sponding to the resource space RS(X1, …, Xt, Xt+1, …, Xm, Xm+1, …, Xn).
RSG1(CS1, E1) and RSG2(CS2, E2) are derived from the Disjoin operation
on RSG(CS, E) with axes Xt+1, …, Xm as described in theorem 2.5. For any
resource class c = (C1, …, Ct, Ct+1, …, Cm, πm+1, …, πn) in RSG(CS, E),
there must exist corresponding resource class c1 = (C1, …, Ct, Ct+1, …, Cm)
in RSG1(CS, E) according to the definition of resource class hierarchy.
Then, any external relationships starting from or ending at c should be
transferred to c1. Any resource class c′ = (C1, …, Ct, Ct+1, …, Cm, Cm+1, …,
Cn) in RSG(CS, E) satisfies: there at least exits one i (m+1≤i≤n) such that
Ci ≠ πi, if there exists any external relationship starting from or ending at
c′, then insert c′ and all external relationships starting from or ending at c′
into the destination SLN and insert the subtype relationship between c′ and
the resource class (C1, …, Ct, Ct+1, …, Cm, πm+1, …, πn).

Merge: Assume that RSG1(CS1, E1) and RSG2(CS2, E2) are two resource
class hierarchies corresponding to the resource spaces RS1(X1, X2, …, Xm,
X′) and RS2(X1, X2, …, Xm, X″) respectively. And RSG(CS, E) is derived
from the Merge operation on RSG1(CS1, E1) and RSG2(CS2, E2) by merg-
ing X′ and X″ into X as described in theorem 2.6. Let ac, ac′ and ac″ be the
axis resource classes corresponding to axes X, X′ and X″ respectively. For
any resource class c1 = (C1, C2,…, Cm, C′) in RSG1(CS1, E1), if c1 is not
equal to ac′, then we can find the resource class c = (C1, C2,…, Cm, C′) in
RSG(CS, E). Any external relationships starting from or ending at c1
should be transferred to c. If c1 is equal to ac′, then any external relation-
ships starting from or ending at c1 should be transferred to each of the im-
mediate successors of ac in RSG(CS, E).

Split: Assume that RSG(CS, E) is one resource class hierarchy correspond-
ing to the resource space RS1(X1, X2, …, Xm, X). RSG1(CS1, E1) and
RSG2(CS2, E2) are derived from the Split operation on RSG(CS, E) by
splitting X into X′ and X″ as described in theorem 2.7. Let ac, ac′ and ac″
be the axis resource classes corresponding to axes X, X′ and X″ respec-
tively. For any resource class c = (C1, C2,…, Cm, C) in RSG(CS, E), if c is
not equal to ac, then we can find the resource class c′ = (C1, C2,…, Cm, C)
in RSG1(CS1, E1) or RSG2(CS2, E2). Any external relationships starting

2.5 Discussion and Summary 79

from or ending at c should be transferred to c′. If c is equal to ac, then any
external relationships starting from or ending at c should be transferred to
both ac′ and ac″.

The following theorems indicate that the RSM-based operations keep
some SLN normal forms.

Theorem 2.8. Both the Join operation and the Merge operation of the Re-
source Space Model keep 1NF-SLN, 2NF-SLN and 3NF-SLN of the origi-
nal Semantic Link Network.

Neither the disjoin operation nor the split operation increase semantic-
equivalent nodes and links, so they keep 1NF and 2NF. But they may
break accessibility, so they do not keep 3NF.

Theorem 2.9. Both disjoin operation and split operation of the Resourcce
Space Model keep 1NF-SLN and 2NF-SLN of the original Semantic Link
Networks.

2.5 Discussion and Summary

A data cube is a type of multidimensional matrix that lets users explore
and analyze a collection of data from many perspectives (Agrawal, 1996;
Gray, 1996). Data is usually organized in cube form. Cooperation with
other tools in statistics or analysis, the data cube can support establishing
trends and analyzing performance (Graefe, 1993).

The following are three major differences between data cube and the
Resource Space Model:

1. The data cube is used to establish trends and analyze performance,
while the Resource Space Model is to specify and manage resources
by orthogonal classification semantics;

2. The data in a data cube has already been processed and aggregated
into cube form, thus data cube is a read-only data model, while the
Resource Space Model can deal with dynamic data; and,

3. A lot of calculations for view in data cube will be completed before
hand, while the operations in the Resource Space Model are real-time.

A data warehouse is a specifically structured copy of transaction data for
query and analysis (Inmon, 2002). The data in a data warehouse is usually
organized by certain multidimensional data model. Cooperation with
OLAP and data mining, data warehouse can provide decision support for
enterprise management.

80 Chapter 2 A Semantic Overlay Integrating Normalization with Autonomy

The main differences between data warehouse and the Resource Space
Model are:

1. A data warehouse is mainly used to support decision-making, so it at-
taches more importance to historical, summarized and consolidated
data (Kimball, 1996). In contrast, the Resource Space Model focuses
mainly on online resource operation.

2. Data warehouses are usually not updatable. Since data warehouses are
usually used to store historical data for query and analysis, data in
data warehouses are read-only. While, the Resource Space Model,
targeted at Internet applications, can be frequently operated.

3. The application scope of the Resource Space Model is broader than
that of data warehouse. The application scope of a data warehouse is
usually confined within a certain enterprise, while the Resource Space
Model can uniformly specify and manage versatile resources on the
whole network.

The comparison in table 2.1 shows that the integration of the Resource
Space Model and the Semantic Link Network reserves the advantages of
both models.

Table 2.1 A brief comparison.

Features RSM SLN RSM+

SLN

Data Cube RDBM

Semantics Classifica-
tion seman-
tics

Link
semantics

Classification
semantics +
Link semantics

Classifica-
tion

+ Aggrega-
tion

Functional

depend-
ence

Normal

Form

Yes Yes Yes No Yes

Integrity Yes Yes Yes No Yes

Reasoning

ability

No Strong Strong No middle

Search Space lo-
cating

Relation

search

Locating +

Relation
search

Space

locating

Key-based
search

2.5 Discussion and Summary 81

The Resource Space Model and the Semantic Link Network reflect clas-
sification semantics and link semantics respectively. They can be trans-
formed to each other under certain conditions. The integration of the two
models can form a single semantic image to support semantic-based re-
source location. The operations on the union view can keep the normal
forms. Further, the integration of the two models can construct a semantic
overlay integrating the normalization and autonomy.

Chapter 3 Expressiveness of Query Languages
for Resource Space Model

A great variety of query languages can be designed for operating resource
spaces. But how many operations are complete or necessary? How to de-
fine “complete” or “necessary” formally? This chapter answers these
questions by investigating the theoretical basis for determining how com-
plete a selection capability is provided in a proposed resource sublan-
guage independently of any host language. The results are very useful to
the design and analysis of the operating languages of the Resource Space
Model.

3.1 The Problem

A number of operations on resource spaces such as Join, Disjoin, Merge
and Split have been defined (Zhuge, 2004a). The principles in the design
of a Resource Operation Language (ROL) of the Resource Space Model
have been proposed (Zhuge, 2004d). The Resource Operation Language
provides a uniform interface for programmers or application systems to
operate the Resource Space Model through programs. The completeness of
query operations on resource spaces is discussed in (Zhuge and Yao,
2006), where a set of complete operations and a set of necessary operations
are also defined.

A relational algebra and a relational calculus are defined in the rela-
tional data model. The relational algebra is a collection of operations on re-
lations, and a query language could be directly based on it. There are eight
operations defined in the relational algebra, they are extended Cartesian
product, traditional set operations (union, intersection and difference), pro-
jection, join, division and selection (Codd, 1970). The relational calculus is
an applied predicate calculus which may also be used in the formulation of
queries on any database consisting of a finite collection of relations in a
simple normal form. A data sublanguage (called ALPHA), founded di-
rectly on the relational calculus, has been informally described in (Codd,
1971b). The equivalence of relational algebra and relational calculus is

84 Chapter 3 Expressiveness of Query Languages for Resource Space Model

proved in (Codd, 1971b; Ullman, 1982). An algebra or calculus is relation-
ally complete if, given any finite collection of relations R1, R2, …, RN in
simple normal form, the expressions of the algebra or calculus permit defi-
nition of any relation definable from R1, R2, …, RN by alpha expressions
(Codd, 1972). A relational database language SQL (Structured Query Lan-
guage) based on the relational algebra and calculus is proposed by Boyce
and Chamberlin (ANSI SQL, 1986; Boyce et al., 1975; Chamberlin and
Boyce, 1974; Chamberlin et al., 1976).

A great variety of languages could be designed for querying and updat-
ing resource spaces. This chapter investigates a theoretical basis which
may be used to determine how complete a selection capability is provided
in a proposed resource sublanguage independently of any host language in
which the sublanguage may be embedded. We especially concern: when
are the defined operations sufficient for use and how many operations are
necessary?

3.2 Completeness of Query Languages on Resource
Spaces

Completeness is a rather mathematical concept. In mathematics, it is
commonly the closeness of a set under operations on the set. For example,
the rational number field is complete under the operations addition, sub-
traction, multiplication and division. And we can also define the complete-
ness of operations, for example on the rational number field, operations
addition, subtraction, multiplication and division are complete but opera-
tions addition and subtraction are incomplete. It is because operations ad-
dition and subtraction can only get a subset of the rational number field,
but not the whole field. If we regard the queries of the Resource Space
Model as operations on resource spaces, then the completeness of query
languages on resource spaces can be viewed as the completeness of opera-
tions as above. First we give an example in the traditional set theory.

3.2.1 Basic Idea

Given two sets A and B, if we only consider the set operations between
them, then how many operations are sufficient for use? Experience tells us
that three operations—union, intersection and difference are complete. But
what is the reason? Can we define other operations in addition to the three
operations?

3.2 Completeness of Query Languages on Resource Spaces 85

Fig.3.1. An example of set operations.

As shown in Fig.3.1, in general, A and B are divided into three parts ac-
cording to the distribution of their elements (here we do not consider the
simpler cases where some of the three parts are empty). Part 1 consists of
elements which are in A but not in B. Part 2 consists of elements which are
both in A and B. Part 3 consists of elements which are in B but not in A. If
the empty set ∅ is also considered as a required result, then there are in all
23=8 required sets, which are: {∅, Part 1, Part 2, Part 3, Part 1 and Part 2,
Part 1 and Part 3, Part 2 and Part 3, Part 1 and Part 2 and Part 3}, which
actually are: {∅, A−B, A∩B, B−A, A, A⊕B, B, A∪ B}, where ⊕ is always
called symmetric difference (Robert, 1979). We can see that the operations
set {∪ , ∩, −, ⊕} are sufficient, because from A and B, these operations

can get all the required results. Among these four operations, only ∪ and
− are necessary, because ∩ and ⊕ can be represented by them, we can see
it from: A∩B= A− (A−B), and A⊕B= (A−B)∪ (B−A).

This inspires us to explore the theoretical basis for the design and analy-
sis of the resource space’s query languages. An operation set is called suf-
ficient when it can get all the required results, and an operation set is called
necessary only when it is the smallest sufficient operation set.

3.2.2 Definition of Completeness of Query Operations

First, we need to make clear the definition of query operations on resource
spaces. Because the operands are resource spaces and the results of opera-
tions are also resource spaces, we can view the query operations as the
mappings on resource spaces. Suppose S is the discussed domain, an op-

86 Chapter 3 Expressiveness of Query Languages for Resource Space Model

eration op on S is a mapping op: S×…×S→S, op (s1, … , sn)= s, where s
and s1, … , sn belong to S. When n=1, op is called unary operation like
Disjoin and Split; when n=2, op is called binary operation like Join and
Merge (Zhuge, 2004b). Here we only consider the unary and binary opera-
tions.

Then, how to define the completeness of operations on resource spaces?
In applications, the number of resource spaces considered is finite, so for
any given finite resource spaces, if an operation set can get all the possible
query results on them, then the operation set is complete. Then we need to
know what all the possible query results are of any given finite resource
spaces.

For query in resource spaces, we only consider the information in single
spaces or the correlations between many spaces. For a single resource
space, the smallest unit is a coordinate of one point. So for any given finite
collection of resource spaces RS1, RS2, …, RSN in simple normal form, we
can get that all the possible query results are in the form of {RS(x1, … , xd)|
xk ∈ RSi(Xj), 1≤i≤N, d≥1 and 1≤k≤d}, i.e., all the combinations of the coor-
dinates of the resource spaces. So we can give the following definition:

Definition 3.1 An operation set OP on resource spaces is called complete,
if: for any given finite collection of resource spaces RS1, RS2, …, RSN in
simple normal form, OP can get all the resource spaces in the form of:
{RS(x1, … , xd)| xk∈ RSi (Xj), 1≤i≤N, d≥1 and 1≤k≤ d}.

As discussed above, in a complete operation set, some operations can be
represented by other operations, so they are not necessary, then the follow-
ing definition can be given:

Definition 3.2 An operation set OP on resource spaces is called necessary,
if it is complete and there does not exist a real subset of it which is also
complete.

Since the definition of the completeness of operations is given, then we
need to discuss the design and verification of a complete set of operations.

3.3 Complete set of Operations

In addition to existing operations, we first define several new operations.
Then the completeness of the defined set of operations is verified, and we
want to answer the question like: how many new operations can we define
in addition to existing operations?

3.3 Complete set of Operations 87

3.3.1 Design of Query Operations

The operations Join, Disjoin, Merge and Split, have been defined in
(Zhuge, 2004a) as follows:

Operation 3.1 Join ⎯ Let |RS| be the number of the dimensions of RS. If
two resource spaces RS1 and RS2 store the same type of resources and have
n (n ≥1) common axes, then they can be joined together as one resource
space RS such that RS1 and RS2 share these n common axes and |RS|=|RS1|
+ |RS2| −n. RS is called the join of RS1 and RS2, denoted as RS1⋅ RS2⇒ RS.

According to the above definition, all the resources in the result resource
space RS come from RS1 and RS2 and they can be classified by more axes.
Join operation provides an approach to refining classification of resources.

Operation 3.2 Disjoin ⎯ A resource space RS can be disjoined into two
resource spaces RS1 and RS2 that store the same type of resources as that of
RS such that they have n (1≤n≤min(|RS1|, |RS2|)) common axes and |RS| − n
different axes, and |RS| = |RS1| + |RS2| − n (denoted as RS⇒RS1⋅RS2). The
Disjoin operation can clarify the classification of resources by separating a
resource space with large number of axes into two smaller ones. Both Join
and Disjoin operations keep 1NF, 2NF and 3NF of the Resource Space
Model.

Operation 3.3 Merge ⎯ If two resource spaces RS1 and RS2 store the
same type of resources and satisfy: (1) | RS1|=| RS2|=n; and (2) they have
n−1 common axes, and there exist two different axes X' and X” satisfying
the merge condition, then they can be merged into one RS by retaining the
n−1 common axes and adding a new axis X*=X'∪X”. RS is called the
merge of RS1 and RS2, denoted as RS1∪RS2⇒RS, and |RS|= n.

Operation 3.4 Split ⎯ A resource space RS can be split into two resource
spaces RS1 and RS2 that store the same type of resources as RS and have
|RS| −1 common axes by splitting an axis X into two: X’ and X″, such that
X=X’∪X″. This split operation is denoted as RS⇒RS1∪RS2.

By the split operation, the unconcerned coordinates on a certain axis can
be filtered out and only the interested coordinates are preserved.

It is obvious that we can also define the set operations of the Resource
Space Model, including operations like Union, Difference and Intersection.
These operations are not the same with the traditional set operations. They
should also satisfy more conditions. Suppose two resource spaces RS1 and
RS2 have the same number of dimensions, and the corresponding axes are

88 Chapter 3 Expressiveness of Query Languages for Resource Space Model

in the same domain ontology. Then, we can define the operations Union,
Difference and Intersection as follows:

Operation 3.5 Union ⎯ The union of two resource spaces RS1(X11, … ,
X1n) and RS2(X21, … , X2n) is: RS1∪ RS2={ (x1, … , xn)| (x1, … , xn)∈ RS1 or
(x1, … , xn)∈ RS2}. The result is also a resource space with n axes, which
consists of the points in RS1 or RS2.

Operation 3.6 Difference ⎯ The difference of two resource spaces
RS1(X11, … , X1n) and RS2(X21, … , X2n) is: RS1-RS2={ (x1, … , xn)| (x1, … ,
xn)∈ RS1 and (x1, … , xn)∉ RS2}. The result is also a resource space with n
axes, which consists of the points in RS1 but not in RS2.

Operation 3.7 Intersection ⎯ The intersection of two resource spaces
RS1(X11, … , X1n) and RS2(X21, … , X2n) is: RS1∩RS2={ (x1, … , xn)| (x1, … ,
xn)∈ RS1 and (x1, … , xn) ∈ RS2}. The result is also a resource space with n
axes, which consists of the points both in RS1 and RS2.

In addition to these operations, we can also define two operations Ex-
tended Cartesian Product and Selection as follows:

Operation 3.8 Extended Cartesian Product ⎯ The extended Cartesian
Product of two resource spaces RS1(X11, …, X1n) and RS2(X21, …, X2m) is a
resource space with n + m axes. The first n axes are the axes of RS1 and the
following m axes are axes of RS2. If RS1 has k1 points and RS2 has k2
points, then the Extended Cartesian Product of RS1 and RS2 has k1×k2
points, we denote it as RS1×RS2={(x11, …, x1n, x21, … , x2m) | (x11, …, x1n) ∈
RS1 and (x21, … , x2m) ∈ RS2 }.

Operation 3.9 Selection ⎯ The selection is also called Restriction. It is
for selecting the points satisfying the given conditions in the resource
space RS, denoted as σF(RS)={t | t∈RS and F(t)=’true’}, where F repre-
sents the selecting conditions, it is a logic expression, it has binary value
‘true’ or ‘false’. The logic expression F is composed of the logic operators
¬, ∧, ∨ connecting every arithmetic expression. In fact the operation ‘se-
lection’ is to select the points that make the logic expression F be true
from the resource space RS.

It is clear that different users will also design new operations on differ-
ent purposes and we cannot list all of them. Then, we will discuss the veri-
fication of the completeness of operations and prove that the nine opera-
tions defined above are a complete operation set for query on resource
spaces.

3.3 Complete set of Operations 89

3.3.2 Verification of Completeness of Operations

Before we verify the completeness of operations, two definitions about op-
erations should be given first. Given two operations op1 and op2 on re-
source spaces, suppose op1 is unary and op2 is binary, we use op1 (RS1) to
represent the result of RS1 under operation op1, RS1op2RS2 to represent the
result of RS1 and RS2 under operation op2.

Definition 3.3 Two unary operations op1 and op2 on resource spaces are
called equivalent to each other if for any resource space RS, op1 (RS)= op2
(RS). Two binary operations op1 and op2 on resource spaces are called
equivalent to each other if for any resource spaces RS1 and RS2, RS1 op1
RS2= RS1 op2 RS2.

For example, if we define a binary operation ‘*’ as: *: RS1* RS2=
RS1∩(RS1∩RS2), then ‘*’ is equivalent to the operation ‘∩’, denoted as
*=∩. If two operations are equivalent to each other, they are the same from
the perspective of mapping, so they are the same operation. We define the
equivalence of operations is to show that the operations elaborately de-
signed by users may be the same with existing operations in essence.

As we can see, the operation ‘*’ is composed of operation ‘∩’, then we
can say that operation ‘*’ can be represented by operation ‘∩’. Then we
have the following definition.

Definition 3.4 Suppose OP is an operation set on resource spaces, an
unary (or binary) operation op is called can be represented by OP, if op
(RS) (or RS1 op RS2) can be represented as an expression of OP.

For example, we have RS1∩RS2= RS1- (RS1- RS2), so operation ‘∩’ can

be represented by operation ‘-’. Equivalence and representation are the two
basic relations between operations discussed in this paper.

Because we cannot give all possible operations, the completeness of op-
erations can only be proven in theory and cannot be proven by giving ex-
amples. But the incompleteness of operations can be proven by giving ex-
amples. So we give an example to show that operations set {Union,
Difference, Intersection} is not complete. For example, suppose the re-
source spaces considered are {RS1(X1, X2), RS2(X1, Y2)}, then it is clear that
space RS3(X1, X2, Y2) is in the required results. But from {RS1(X1, X2),
RS2(X1, Y2)}, the operations {Union, Difference, Intersection} cannot get
the space RS3(X1, X2, Y2). It is because the precondition of these traditional
set operations is that the operated spaces have the same dimensions, and
the result spaces also have the same dimension. So from two 2-

90 Chapter 3 Expressiveness of Query Languages for Resource Space Model

dimensional spaces we cannot get a 3-dimensional space. Then, it is clear
that operations set {Union, Difference, Intersection} is not complete.

Then we will prove that the nine operations defined above are complete
for query on resource spaces.

Theorem 3.1. The nine operations Union, Difference, Intersection, Ex-
tended Cartesian Product, Selection, Join, Disjoin, Merge and Split are
complete for query in resource spaces.

Proof. According to definition 3.1, an operation set OP on resource spaces
is complete if: for any given finite collection of resource spaces RS1,
RS2, …, RSN in simple normal form, and OP can get all the resource spaces
in the form of: {RS(x1, … ,xd)| xk∈ RSi (Xj), 1≤i≤ N, d≥1 and 1≤k≤ d }. So,
we only need to show that the nine operations can get the result spaces as
above.

We use mathematical induction to prove this. When N=1, for a single
resource space RS1(x1, … ,xd), we can use the unary operation Selection to
get the spaces in the form of {RS(x1, … , xn)| (x1, … , xn)∈ RS1}, then use
the unary operation Disjoin to select any axes we need, then we can get the
spaces in the following form {RS(x1, … , xd)| xk∈ RS1 (Xj) , 1≤j≤ n and
1≤k≤ d }, which means that when N=1 the conclusion holds. Suppose
when N=m the conclusion holds, i.e., the nine operations can get all the re-
sult spaces in the form of {RS(x1, … , xd)| xk∈ RS1 (Xj) , 1≤j≤ n and 1≤k≤
d }, next we will show that when N=m+1 the conclusion also holds. Now
we divide these m+1 resource spaces into two parts: RS1, RS2, …, RSm and
RSm+1, for the preceding m spaces, from the assumption we can get that the
nine operations can get the result spaces in the following form: {RS(x1, … ,
xd)| xk∈ RSi (Xj), 1≤i≤ m, d≥1 and 1≤k≤ d }; for the resource space RSm+1,
as the above using operations Selection and Disjoin we can get: {RS(x1,
… , xd)| xk∈ RSm+1 (Xj) , 1≤j≤ n and 1≤k≤ d }. For these two spaces, using
the set operations Union, Difference, Intersection and operation Extended
Cartesian Product we can get the correlations between them: {RS(x1, … ,
xd)| xk∈ RSi (Xj), 1≤i≤ m+1, d≥1 and 1≤k≤ d }. So when N=m+1 the con-
clusion also holds. Then we can get for any given finite collection of re-
source spaces RS1, RS2, …, RSN in simple normal form, the nine operations
can get all the resource spaces in the form of: {RS(x1, … ,xd)| xk∈ RSi(Xj),
1≤i≤ N, d≥1 and 1≤k≤ d}. So, the nine operations Union, Difference, Inter-
section, Extended Cartesian Product, Selection, Join, Disjoin, Merge and
Split are complete for query in resource spaces. 

3.3 Complete set of Operations 91

From the above proof process we can see that, in fact the operation set
{Union, Difference, Extended Cartesian Product, Selection, Disjoin} is al-
ready complete and the other four operations can all be represented by it.
Then are these five operations necessary? The answer is yes. We only need
to show that any of these five operations cannot be represented by the
other operations. For this negative conclusion, we only need to give a
counter-example. Then we will give an example to show that operation
Extended Cartesian Product cannot be represented by operations {Union,
Difference, Selection, Disjoin}. Suppose RS is a 2-dimensional resource
space, then RS×RS is a 4-dimensional resource space. But the operations
{Union, Difference, Selection, Disjoin} can only maintain or decrease the
dimensionality of resource spaces, so from the 2-dimensional resource
space RS, the four operations cannot get a resource space whose dimen-
sionality is larger than 2. So space RS×RS cannot be got from RS under op-
erations {Union, Difference, Selection, Disjoin}, which means that opera-
tion Extended Cartesian Product cannot be represented by operations
{Union, Difference, Selection, Disjoin}. Then we can get the following
corollary.

Corollary 3.1. The five operations Union, Difference, Extended Cartesian
Product, Selection and Disjoin are complete and necessary for query in re-
source spaces.

In theory, the definition of a complete and necessary operation set is
enough, it is indeed from the perspective of expressiveness of query lan-
guages. But in applications, some new operations which can be repre-
sented by existing operations will also be defined, for the convenience of
expression or operation. For example, from the Join operation, we can
naturally introduce another useful operation: Division. And we can define
another operation Projection from the operation Disjoin. Then how many
new operations we can define in addition to the existing operations? The
answer is infinite. The following example will show this.

Example 3.1 There exist infinite different operations. According to defini-
tion 3, we only need to show that there exist infinite operations which are
not equivalent to each other. We define a sequence of operations {Θ1, Θ2,
Θ3, …} as follows:

 Θ1: rs1 Θ1 rs2 = (rs1 ∪ rs2) × (rs1 ∩ rs2),
 Θ2: rs1 Θ2 rs2 = (rs1 Θ1 rs2) Θ1 (rs1 Θ1 rs2),
 ……
 Θi+1: rs1 Θi+1 rs2 = (rs1 Θi rs2) Θ1 (rs1 Θi rs2),
 ……

92 Chapter 3 Expressiveness of Query Languages for Resource Space Model

From the definition, we have:

rs1 Θ2 rs2 = (rs1 Θ1 rs2) Θ1 (rs1 Θ1 rs2)
= ((rs1 ∪ rs2) × (rs1 ∩ rs2)) Θ1 ((rs1 ∪ rs2) × (rs1 ∩ rs2))
= (((rs1 ∪ rs2) × (rs1 ∩ rs2)) ∪ ((rs1 ∪ rs2) × (rs1 ∩ rs2))) ×

(((rs1 ∪ rs2) × (rs1 ∩ rs2)) ∩ ((rs1 ∪ rs2) × (rs1 ∩ rs2)))
= ((rs1 ∪ rs2) × (rs1 ∩ rs2)) × ((rs1 ∪ rs2) × (rs1 ∩ rs2))
= (rs1 Θ1 rs2) × (rs1 Θ1 rs2).

So we can see that Θ2= Θ1 × Θ1. And, we conjecture that Θi= Θi-1 × Θi-1
for any i ≥2.

rs1 Θi rs2 = (rs1 Θi-1 rs2) Θ1 (rs1 Θi-1 rs2)
= ((rs1 Θi-1 rs2) ∪ (rs1 Θi-1 rs2)) × ((rs1 Θi-1 rs2) ∩ (rs1 Θi-1 rs2))
= (rs1 Θi-1 rs2) × (rs1 Θi-1 rs2).

So we have Θi= Θi-1 × Θi-1 for any i ≥2. Then, it is clear that operations
{Θ1, Θ2, Θ3, …} are not equivalent to each other, so they are infinite and
different operations.

This example tells that finding a “self-contained” operation set regard-
less of its applications is impractical.

After the study of the completeness of operations, we will discuss the
expressiveness of query languages, and the emphasis is on the comparison
between expressiveness of different query languages and the characteris-
tics of expressiveness.

3.4 Expressiveness of Query Languages

The expressiveness of query languages is an abstract concept, it is difficult
to be defined or depicted accurately. Here we have not defined the expres-
siveness of operations directly, we just study the comparison between ex-
pressiveness and some characteristics of it. For example, we want to an-
swer questions like: given two operation languages, whose expressiveness
is stronger? Or for two given operations P and Q, whose expressiveness is
stronger?

3.4.1 Comparison between Expressiveness

Given two operations op1 and op2 on two resource spaces RS1 and RS2,
suppose op1 is unary and op2 is binary. We use op1 (RS1) to represent the

3.4 Expressiveness of Query Languages 93

result of RS1 under operation op1, and use RS1 op2RS2 to represent the result
of RS1 and RS2 under operation op2. Then, all the resource spaces we can
get from the set {RS1, RS2} under the set { op1, op2} can be listed as fol-
lows: {op1 (RS1), op1(RS2), RS1op2RS2, op1 (op1(RS1), op1 (op1(RS2),
op1(RS1 op2 RS2), …}. Then, a definition can be given as follows:

Definition 3.5 Given a set of resource spaces RSS and a set of operations
OP on the resource spaces, we define RSSOP as all the resource spaces that
can be got from RSS under a sequence of operations in OP.

In general cases, when RSS and OP are both finite, RSSOP is also finite.
For example, for RSS={RS1, RS2}, if OPs={∪, ∩}, then RSSOPs ={RS1, RS2,
RS1∪RS2, RS1∩RS2}; if OPt={∪}, then RSS OPt={RS1, RS2, RS1∪RS2}. This
example is very simple, but in many cases, it is not easy to compute RSSOP
given RSS and OP. For example, for RSS ={RS1, RS2} and OP={-}, one

may think that RSSOP ={RS1-RS2, RS2-RS1}. But in fact, RS1- RS1=∅, RS1-
∅ =RS1, RS2-∅ =RS2 and RS1- (RS1- RS2)= RS1∩ RS2, now the generated

spaces are {∅, RS1 , RS2, RS1-RS2, RS2-RS1, RS1∩RS2}. Are there more
spaces that can be generated? The answer is no, because the results of
these six spaces under the operation ‘-’ are also included by themselves,

for example, RS1- (RS1∩RS2)=RS1- RS2. So in fact now RSSOP ={∅, RS1,

RS2, RS1-RS2, RS2-RS1, RS1∩RS2}.

Intuitively, given any set of resource spaces RSS, if operation set OPs
can get more results than OPt, i.e., RSS Ops ⊃ RSS OPt, then we can say that
the expressiveness of OPs is stronger than OPt. So a definition can be
given as follows:

Definition 3.6 Given two operation sets OPs and OPt on resource spaces,
the expressiveness of OPs is stronger (weaker) than OPt, denoted by
OPs>OPt (OPs<OPt), if for any given set of resource spaces RSS, RSS OPs⊃
RSS OPt (RSS OPs⊂ RSS OPt) holds.

Here the “more results” does not mean the whole quantity of data in the
result spaces, but the number of different spaces in the result spaces. For
example, for RSS ={ RS1 , RS2}, OPs={∪, ∩} and OPt={∪}, we have
RSSOPs ={RS1, RS2, RS1∪RS2, RS1∩RS2} and RSSOPt ={RS1, RS2,
RS1∪RS2}. The whole quantities of data are all of the resources included in
space RS1∪RS2, but the operation set OPs gets one more result RS1∩RS2,
so we say that the expressiveness of OPs is much stronger than OPt.

94 Chapter 3 Expressiveness of Query Languages for Resource Space Model

3.4.2 Some Characteristics of Expressiveness

Some characteristics of expressiveness of operations are given as follows.

Characteristic 3.1 Given two operation sets OPs and OPt, it is possible
that neither OPs>OPt nor OPs<OPt holds.

For example, for RSS={RS1, RS2}, OPs={∩} and OPt={∪}, we have
RSSOPs ={RS1, RS2, RS1∩RS2} and RSSOPt ={RS1, RS2, RS1∪RS2}. So
RSSOPs⊄ RSSOPt and RSSOPt ⊄ RSSOPs, then both OPs>OPt and OPs<OPt do
not hold, i.e., we cannot say which one is stronger than the other in expres-
siveness.

Characteristic 3.2 Given two different operation sets {OPs} and {OPt},
the expressiveness of them can be the same.

For example, for RSS={RS1 , RS2}, OPs={∪, -} and OPt={∪, -, ∩}, we

have RSSOPs ={∅, RS1- RS2, RS1∩ RS2, RS2- RS1, RS1, RS1⊕RS2, RS2, RS1

∪ RS2}=RSSOPt, so the expressiveness of them are the same.

Characteristic 3.3 Given two operation sets OPs and OPt, if OPs⊃OPt
then OPs>OPt.

Characteristic 3.4 If OPs>OPt and OPr>OPs, then OPr>OPt.

Characteristic 3.5 Given an operation set OPs, if OP is equivalent to or
can be represented by some operations in OPs, then OPs>OP.

Characteristic 3.6 If OPs>OPt, then (OPs∪OPt)=OPs.

Characteristic 3.6 tells that if newly defined operations can be repre-
sented by existing operations, then the expressiveness of operations does
not increase in essence.

3.5 Comparison and Analysis

Section 1.7 has made a comparion between the Resource Space Model and
the Relational Data Model. Several differences influence the design of a
query language. Relational data tend to have a regular structure, which al-
lows the descriptive meta-data to be stored in a separate catalog. Resources
in resource space, in contrast, are usually heterogeneous. Resource spaces
often contain many levels of nested elements, whereas relational data are
“flat.” Relational data are usually “dense” (every column has a value). Re-

3.5 Comparison and Analysis 95

source spaces, in contrast, are often “sparse”. So, the relational query lan-
guages are not suitable for querying resource spaces.

The Resource Space Model needs a resource-using mechanism to pro-
vide not only an operational browser for end users but also a programming
environment for high-level developers (Zhuge, 2004d). It provides a set of
specific programming language — Resource Operation Language ROL,
and also provides a running platform for this language to be used for que-
rying and operating resource spaces. The ROL could be embedded in other
high-level programming languages supporting the call from other lan-
guages. In contrast, the SQL provides a programming language for rela-
tional database application systems to operate relational tables.

The ROL could be a programming environment. It adopts the SQL’s
SELECT-FROM-WHERE grammar. The ROL can execute the operations
similar to the classic relational databases such as nesting query, aggrega-
tion and ordering the results. The ROL also borrows from the XML query
language such characteristics as the management of the structured and
semi-structured data, the support of abstract data types, the support of
document selection and local path expression. The comparisons of the
ROL with the XQL (XML Query Language) and the SQL are given in the
following table.

96 Chapter 3 Expressiveness of Query Languages for Resource Space Model

Table 3.1 Comparisons of ROL with XQL and SQL

Feature Items ROL XQL SQL

Abstract data
types Yes No No

SQL-like Yes No Yes

Specific data
model Yes No Yes

Document selec-
tion Yes Yes No

Partial specified
path expression Yes Yes No

Nested queries Yes No Yes

Update language Yes No Yes

Loop statement Yes No Par-
tially

Branch statement Yes No Par-
tially

Set operations Yes Yes Yes

Aggregates Par-
tially

Par-
tially Yes

Join operation Yes No Yes

Open operation Yes No No

Support View Yes No Yes

Create new ele-
ments Yes No Yes

Query structure Yes No No

Query content Yes Yes Yes

Ordering results Yes No Yes

3.6 Summary 97

 3.6 Summary

This chapter investigates the completeness of resource space query lan-
guages. The completeness of operations is introduced to answer when the
defined operations are sufficient. Several new operations are defined, and
the verification of the completeness of the operations is discussed.

We conclude that:

1. {Union, Difference, Intersection, Extended Cartesian Product, Selec-
tion, Join, Disjoin, Merge and Split} is a set of complete operations
for query on resource spaces; and,

2. {Union, Difference, Extended Cartesian Product, Selection and Dis-
join} is a set of complete and necessary operations for query on re-
source spaces.

It is possible to define infinite new operations regardless of practical
requirements, while the definition of a self-contained set of operations is
impractical. The proposed framework can be used to compare the expres-
siveness of different resource sublanguages. The theoretical results are
very useful in the design and analysis of resource space sublanguages, and
they could be also applied to the operation theory of other data models like
relational data model and XML.

Any general purpose query language of the Resource Space Model
must have this completeness at least.

Chapter 4 Algebra and Calculus of the Resource
Space Model

To know the query capability and make use of the potential expressive
power of the Resource Space Model are essential issues. The query capa-
bility and expressive power of the Resource Space Model can be studied
from two perspectives: resource space algebra and resource space calcu-
lus.

4.1 Basic Idea

The resource space algebra consists of a set of resource spaces and a set of
operations of the Resource Space Model. Results of operations on re-
source spaces are also resource spaces. Users can use a series of opera-
tions in the resource space algebra to obtain the desired resources. The
query completeness of the operations in the proposed resource space alge-
bra has been discussed in chapter 3.

To lay the foundation of the query language for the Resource Space
Model, we propose a non-procedural query style ⎯ a resource space cal-
culus. The resource space calculus is a type of applied predicate calculus
and a foundation for the declarative query language. By the alpha expres-
sions defined in the resource space calculus, users can easily and clearly
specify the desired resources.

The relational algebra and the relational calculus were proposed to depict
the query capability of the relational model (Codd, 1971a; Ullman, 1982).
A reduction algorithm is also proposed to transform a relation expression
into a semantically equivalent expression of the relational algebra (Codd,
1972), though this reduction algorithm has a little defect (Date, 1989; Date
1992). The extended relational algebra and relational calculus with aggre-
gate functions were discussed (Klug, 1982). Structured Query Language
(SQL) has the features of both the relational algebra and the relational cal-

100 Chapter 4 Algebra and Calculus of the Resource Space Model

culus (Boyce et al. 1975; Chamberlin and Boyce, 1976; Chamberlin et al.,
1976).

A query algebra on Object-Oriented Database synthesizing relational
query concepts with object-oriented databases as well as corresponding
query languages were proposed (Alashqur et al., 1989; Shaw and Zdonik,
1990; Shipnan, 1981; Zaniolo, 1983). A conceptual model and its algebra
and calculus have been introduced for OLAP-based applications (Gyssens
and Lakshmanan, 1997).

4.2 Resource Space Algebra

Query operations on a given resource space may result in only some desir-
able points, but these resultant points cannot be operated further by the
proposed resource space operations. To guarantee the query result to be a
resource space, the following mechanism is employed. Any operation will
result in a certain resource space and all undesired points in this resultant
resource space will be maintained and marked as null points instead of be-
ing filtered out and all desired points marked as non-null points.

In the following discussion, R(p) denotes the resources that point p can
contain and RΔ(p) denotes the resources that point p actually contains. In a
resource space RS, for any null point p we have R(p)=∅, RΔ(p)=∅ and
p∉RS. For axis Xi and point p in RS, p[Xi] is used to denote the projection
of p on the axis Xi.

Two resource spaces RS1(X1, X2 … Xn) and RS2(Y1, Y2 … Yn) are union-
compatible if RS1 and RS2 have the same schema, i.e. X1=Y1, …, Xn=Yn.
Let p1 and p2 be two points in two union-compatible resource spaces
RS1(X1, X2 … Xn) and RS2(X1, X2 … Xn) respectively. If p1[Xi]=p2[Xi] for
1≤i≤n holds, then we say that p1 has the same coordinates with p2, denoted
as p1 =p p2.

4.2.1 Definitions of Operations

All operations in this algebra fall into two categories: the traditional set
operations (union, intersection, difference and Cartesian product) and the

4.2 Resource Space Algebra 101

RSM-specific operations (join, disjoin, merge, split, division, selection,
and projection).

The set operations of the Resource Space Model can be defined as fol-
lows:

Union. For two union-compatible resource spaces RS1 and RS2, the union
of RS1 and RS2, denoted as RS1 ∪ RS2, has the same resource space schema
as RS1 and RS2, and RS1∪RS2 = {p | (p1∈RS1 ∨ p2∈RS2) ∧ p=pp1 ∧ p=pp2}.
This means that p is non-null in RS if and only if either p1 is non-null in
RS1 or p2 is non-null in RS2. For any point p in RS1∪RS2 and its counter-
parts p1 in RS1 and p2 in RS2, we have RΔ(p) = RΔ(p1) ∪ RΔ(p2). Fig. 4.1 is
an example of union operation.

Fig. 4.1. An example of Union operation.

Intersection. For two union-compatible resource spaces RS1 and RS2, the
intersection of RS1 and RS2, denoted as RS1∩RS2, has the same resource
space schema as RS1 and RS2. And RS1∩RS2={p | p1∈RS1 ∧ p2∈RS2 ∧ p =p

p1 ∧ p =p p2}. This means that p is non-null in RS if and only if both p1 is
non-null in RS1 and p2 is non-null in RS2. For any point p in RS1∩RS2 and
its counterparts p1 in RS1 and p2 in RS2, we have RΔ(p) = RΔ(p1)∩RΔ(p2).
Fig. 4.2 is an example of the intersection operation.

102 Chapter 4 Algebra and Calculus of the Resource Space Model

Fig. 4.2. An example of the Intersection operation.

Difference. For two union-compatible resource spaces RS1 and RS2, the
difference of RS1 and RS2, denoted as RS1−RS2, has the same resource
space schema as RS1 and RS2. For any point p in RS1−RS2, let p1 and p2 be
two points having the same coordinates as p in RS1 and in RS2 respectively.
Then RΔ(p)=RΔ(p1) − RΔ(p2). p is non-null if and only if either (1) p1 is non-
null and p2 is null, or (2) RΔ(p) is non-null. Otherwise, p is null.

Cartesian product. Let RS1(X1, X2 … Xn) and RS2 (Y1, Y2 …Ym) be two re-
source spaces that store the same type of resources. The Cartesian product
of RS1 and RS2 is defined as RS1 × RS2 = RS(X1, X2 … Xn, Y1, Y2 …Ym). For
any point p(x1, x2 … xn, y1, y2 … ym) in RS, there exist p1(x1, x2 … xn) and
p2(y1, y2 … ym) in RS1 and RS2 respectively. Then p is non-null if and only
if both p1 and p2 are non-null. If n=m, Xi=Yi (1≤i≤n) and xj=yj (1≤j≤n), then
RΔ(p)=RΔ(p1)∪RΔ(p2). Otherwise, RΔ(p)=RΔ(p1)∩RΔ(p2).

The RSM-specific operations Join, Disjoin, Merge and Split have been
defined in (Zhuge, 2004a). The following definitions are given from the
view of resources.

Join. Let |RS| be the number of the dimensions of the RS. If two resource
spaces RS1(X1, …, Xm, Y1, …, Yn) and RS2(Y1, …, Yn, Z1, …,Zk) store the
same type of resources and have n common axes, then they can be joined
together as one resource space RS(X1, …, Xm, Y1, …, Yn, Z1, …,Zk) such
that RS1 and RS2 share these n common axes and |RS|=|RS1| + |RS2| − n. For
any point p(x1, …, xm, y1, …, yn, z1, …,zk) in RS, p is non-null if and only if
both point p1(x1, …, xm, y1, …, yn) in RS1 and point p2(y1, …, yn, z1, …,zk)
in RS2 are non-null. If RS1 and RS2 are union-compatible, then

RS1 RS2 RS1 ∩RS2

4.2 Resource Space Algebra 103

RΔ(p)=RΔ(p1)∪RΔ(p2). Otherwise, RΔ(p) = RΔ(p1)∩RΔ(p2). RS is called the
join of RS1 and RS2, denoted as RS1⋅RS2⇒RS.

According to the above definition, all the resources in the new resource
space RS come from RS1 and RS2 and can be classified by X1, …, Xm, Y1,
…, Yn, Z1, …, Zk. The Join operation provides an efficient method to refine
classification of resources.

Disjoin. A resource space RS(X1, …, Xm, Y1, …, Yn, Z1, …, Zk) can be dis-
joined into two resource spaces RS1(X1, …, Xm, Y1, …, Yn) and RS2(Y1, …,
Yn, Z1, …, Zk) that store the same type of resources as that of RS such that
they have n (1≤n≤min(|RS1|, |RS2|)) common axes and |RS| − n different
axes, and |RS|=|RS1| + |RS2| − n. For any point p1 in RS1, there exists a set P
of points in RS, each element of which has the same projections on X1, …,
Xm, Y1, …, Yn as p1. Then p1 is non-null if and only if there exists at least
one non-null point in P. RΔ(p1)=∪RΔ(p) for any p∈P. RS1 and RS2 are
called disjoin of RS, denoted as RS⇒RS1⋅RS2.

Different from the Join operation, the disjoin operation can clarify the
classification of resources by separating large number of axes into two
overlapped parts.

Based on the disjoin operation, we can naturally introduce another use-
ful operation: projection. The projection of the RSM has almost the same
definition as disjoin except that projection results in only one resource
space which includes all the desirable axes. For resource space RS(X1, …,
Xm, Xm+1, …, Xn), πX1, …, Xm(RS) will be used to denote the projection of the
resource space RS on axes X1, …, and Xm. From the definition of disjoin, it
is clear that the projection provides an algebraic counterpart to the existen-
tial quantifier.

Merge. If two resource spaces RS1(X1, …, Xn-1, X') and RS2(X1, …, Xn-1,
X”) store the same type of resources and satisfy: 1) |RS1|=|RS2|=n; and, 2)
they have n−1 common axes, and there exist two different axes X' and X”
satisfying the merge condition, then they can be merged into one RS by re-
taining the n−1 common axes and adding a new axis X*=X'∪X”. RS is
called the merge of RS1 and RS2, denoted as RS1∪RS2⇒RS, and |RS|= n.
For any point p in RS, there exists a set P of points in RS1 and RS2, each
element of which has the same projections on all axes as p. Then p is non-
null if and only if there exists at least one non-null point in P. The formal

104 Chapter 4 Algebra and Calculus of the Resource Space Model

definition is RS1∪RS2 = {p(X1, …, Xn-1, X*) | p∈RS1 ∨ p∈RS2 ∧ X*=RS1.X'
∪ RS2.X”}.

It is obvious that the Union operation is the special case of the merge
operation where all axes are common. The above definition can be easily
extended to a more general situation where resource spaces RS1 and RS2
have n-m common axes and m different axes satisfying the merge condi-
tion.

Split. A resource space RS can be split into two resource spaces RS1 and
RS2 that store the same type of resources as RS and have |RS|−1 common
axes by splitting an axis X into two: X’ and X″, such that X=X’∪X″. This
split operation is denoted as RS⇒RS1∪RS2. For any point p1 in RS1, there
exists a point p in RS, which has the same projections on all axes as p1.
Then p1 is non-null if and only if p is non-null. The formal definition is
RS1(X1, …, Xn-1, X[C]) = {p(X1, …, Xn-1, X*) | p∈RS ∧ X*=X[C]}, where
X[C] represents the axis X containing only the coordinates in coordinate set
C.

By using the split operation, the unconcerned coordinates on a certain
axis can be filtered out and only the interesting coordinates are preserved.

Selection. For a resource space RS, the Selection operation is used to select
the desirable points according to the given restriction. It is denoted as
σF(RS)={p | p∈RS ∧ F(p)}, where F is a logical expression. Any point in
RS making F true will be marked with non-null and other points will be
marked with null. F has the following four forms:

1. pm[Xi] θ Y, where Y may be pn[Xj] or just a noun and noun phrase in
domain ontology and θ represents =, ≠, <, ≤, ≥ or >. It is a type of re-
strictions on the projections on axes of points.

2. pm[Xi] θ Y, where Y is just a set of nouns or noun phrases in domain
ontology and θ represents ∈ or ∉.

3. RΔ(pm[Xi]) θ RΔ(pn[Xj]), where θ represents =, ≠, ⊃, ⊇, ⊄, ⊂ and ⊆. It
is a type of restrictions on the set of resources that points contain.

4. fc(pi) θ Y, where fc is the function to calculate the cardinality of the
given point and θ represents =, ≠, <, ≤, ≥ and >. It is a type of restric-
tions on the quantity of resources that points contain.

Division. Let RS1(X1, …, Xm, Y1, …, Yt) and RS2(Y1, …, Yt, Z1, …, Zn) be
two resource spaces. Dividing RS1 by RS2 (denoted as RS1[÷Y1, …, Yt]RS2)

4.2 Resource Space Algebra 105

is a resource space πX1, …, Xm(RS), and for any point p in πX1, …, Xm(RS), p is
non-null if and only if for any non-null point p″ in RS2 there exists a non-
null point p’ in RS1 such that p[X1, …, Xm]=p’[X1, …, Xm] and p″ [Y1, …,
Yt]=p’[Y1, …, Yt].

The division operation provides an algebraic counterpart of the Univer-
sal Quantifier. Its role is similar to the division operation in relational al-
gebra.

4.2.2 Relationships among Operations

Given a resource space RS, the following situation often occurs: there usu-
ally exist some resource-entries (for example r) and points (for example p)
in RS such that r∈R(p) but r∉RΔ(p).

In Fig. 4.3(a), there exists a resource-entry id1 to appear in both point p1
and point p2 (3NF is not satisfied in this case). So we can conclude that
r∈R(a1) from r∈RΔ(p1) and r∈R(b2) from r∈ RΔ(p2). So r∈R(p3) but
r∉RΔ(p3). An issue of this situation is that a user could not obtain the re-
source-entry r when users only query the point p3.

To solve this issue, we suppose that all resource spaces satisfy the fol-
lowing restriction. For any resource space RS(X1, …, Xn), any point p in
RS and any resource r, r∈RΔ(p) holds if and only if there exist n points p1,
p2, …, and pn in RS such that both r∈RΔ(pi) and p[Xi]=pi[Xi] hold for any
1≤i≤n.

Fig. 4.3. An example of full resource space.
(a) (b)

106 Chapter 4 Algebra and Calculus of the Resource Space Model

Theorem 4.1. For any resource space RS(X1, …, Xn) satisfying the above
restriction, RS(X1, …, Xn)=(πX1(RS) × πX2(RS) ×…× πXn(RS))⋅RS holds.

Proof. It is clear that the resource space RS and the resource space
(πX1(RS) × πX2(RS) ×…× πXn(RS))⋅RS have the same schema. For any point
p in RS and p’ in (πX1(RS) × πX2(RS) ×…× πXn(RS))⋅RS such that p =p p’,
we will prove that p is non-null if and only if p’ is non-null, and that
RΔ(p)=RΔ(p’) holds. (1) If p is non-null, then there exist n non-null points
p1, p2, …, pn in πX1(RS), πX2(RS), …, πXn(RS) respectively such that p[Xi] =
pi[Xi] hold for any 1≤i≤n. So there exists a non-null point p″ in πX1(RS) ×
πX2(RS) ×…× πXn(RS) such that p =p p″. Since both p and p″ are non-null,
p’ is non-null point. It is obvious that if p is a null point then p’ is also a
null point. So p is non-null if and only if p’ is non-null. (2) Since RS satis-
fies the given restriction, for any resource r if r∉RΔ(p) holds then there ex-
ists at least one axis Xi (1≤i≤n) in RS such that r∉RΔ(p[Xi]). So for resource
space πXi(RS), r∉RΔ(p[Xi]). Since p[Xi]=p’[Xi] holds, r∉RΔ(p[Xi]) holds.
Thus r∉RΔ(p’) holds. On the other hand, if r∈RΔ(p) holds, we can easily
conclude that r∈RΔ(p’) holds. So RΔ(p)=RΔ(p’) holds. Thus RS(X1, …,
Xn)=(πX1(RS) × πX2(RS) ×…× πXn(RS))⋅RS holds. 

According to theorem 4.1, for any resource space RS(X1, …, Xn), the
above restriction can be easily satisfied by setting RS as (πX1(RS) × πX2(RS)
×…× πXn(RS))⋅RS.

Theorem 4.2. Let A=X1, …, Xm, B=Y1, …, Yt and C=Z1, …, Zn. For any re-
source space RS1(A, B) and resource space RS2(B, C), RS1(A, B)[÷B]RS2(B,
C) = πA(RS1) − (πA(RS1) ⋅ πA(πA(RS1) × πB(RS2) − πA(RS1) × πB(RS2) ⋅ RS1))
holds.

Proof. (1) Let p and p’ be two points in resource spaces RS1(A,
B)[÷B]RS2(B, C) and πA(RS1) − (πA(RS1) ⋅ πA(πA(RS1) × πB(RS2) − πA(RS1) ×
πB(RS2) ⋅ RS1)) respectively. We will prove that if p =p p’ holds, then p is
non-null if and only if p’ is non-null. Suppose that p is a null point in the
resource space RS1(A, B)[÷B]RS2(B, C). Then there exits a null point p1 in
RS1(A, B) and a non-null point p2 in RS2(B, C) such that p1[A]=p[A] and
p1[B]=p2[B] hold. Let p3 be the point in πA(RS1) having the same coordi-
nates as p. If p3 is null, then it is obvious that the point p’ is a null point.
The following is the case that p3 is a non-null point in πA(RS1). Let p4 be
the point in πA(RS1) × πB(RS2) having the same coordinates as p1. Since p3
in πA(RS1) and p2 in πB(RS2) are non-null points, p4 is a non-null point.
Since point p1 is a null point in RS1, the point p1’ in πA(RS1) × πB(RS2) ⋅ RS1

4.3 Resource Space Calculus 107

satisfying p1 =p p1’ is also a null point. Let p5 be the point in (πA(RS1) ⋅
πA(πA(RS1) × πB(RS2) − πA(RS1) × πB(RS2) ⋅ RS1)) having the same coordi-
nates as p. So p5 is also a non-null point. Since both p3 and p5 are non-null
point, p’ is a null point. (2) In the same way, we can prove that p’ is also a
non-null point when p is a non-null point. 

Theorem 4.3. Merge, Difference, Cartesian product, Projection and Selec-
tion are sufficient and necessary. And other operations can be represented
as follows:

1. Union is the special case of Merge;
2. RS1∩RS2 = RS1 − (RS1 − RS2);
3. RS1(X1, …, Xm, Y1, …, Yt) ⋅ RS2(Y1, …, Yt, Z1, …, Zn) = πX1, …, Xm, Y1, …,

Yt, Z1, …, Zn(RS1 × RS2);
4. RS(X1, …, Xn-1, X[C]) = σp[X]∈C(RS), where C represents a set of coor-

dinates; and,
5. RS1(A, B)[÷B]RS2(B, C) = πA(RS1) − (πA(RS1) ⋅ πA(πA(RS1) × πB(RS2) −

πA(RS1) × πB(RS2) ⋅ RS1)), where A=X1, …, Xm, B=Y1, …, Yt and C=Z1,
…, Zn.

Theorem 4.4. In the five basic operations (Merge, Difference, Cartesian
product, Projection and Selection), Difference, Cartesian product, Projec-
tion and Selection keep 1NF (the first normal form), 2NF (the second nor-
mal form) and 3NF (the third normal form) of the Resource Space Model.
Merge keeps 1NF and 2NF, but it does not keep 3NF. As a special Merge
operation, Union keeps 1NF, 2NF and 3NF.

4.3 Resource Space Calculus

Having the resource space algebra, we now introduce an applied predicate
calculus which can be used to construct declarative queries on any re-
source space system consisting of a finite set of resource spaces.

4.3.1 Definition

The resource space calculus consists of several classes of objects. They in-
clude variables, terms, formulas and alpha expressions.

108 Chapter 4 Algebra and Calculus of the Resource Space Model

The set V of variables is the countable sets {p, p1, p2, p3 ...}, where each
pi stands for a point variable. A point variable p is a free variable if p does
not occur within the scope of any quantifier (∃ or ∀). Otherwise p is a
bound variable.

The set T of terms is composed of the following six parts.

1. Any noun or noun phrase in ontology qualified to name coordinates is
in T.

2. Any axis of a certain resource space, the split of an axis or the merge
of two axes belong to T.

3. For any point variable pi and its any axis Xj, pi[Xj] is a term.
4. For every point variable pi, the set RΔ(pi[Xj]) is a term.
5. For every point variable pi, fc(pi[Xj]) is a term.
6. Integers not less than 0 belong to T.

The set RF of range formulas is defined as follows.

1. Let RSi be a resource space and point variable p∈V, then RSi(p) be-
longs to RF (The monadic predicate RSi(p) is used to state that the
point variable p has the range of resource space RSi.)

2. If point variable p is the only point variable in a range formula, then
this range formula is called a range formula over p. Let Δ, Γ be two
range formulas over p. Then Δ∧¬Γ belongs to RF.

3. Let Δ, Γ∈RF. For any point variable p in Δ and Γ, if all resource
spaces specifying the range of p in Δ and Γ are union-compatible, then
both the disjunction Δ∨Γ and the conjunction Δ∧Γ are in RF.

The set F of formulas includes the following six types of formulas.

1. Any range formula in RF is in F.
2. Coordinate formula has one of the two forms (a) pm[Xi] θ Y, where Y

may be pn[Xj] or just a noun and noun phrase in T and θ represents
any of the relations =, ≠, <, ≤, ≥ and >; (b) pm[Xi] θ Y, where Y is a set
of nouns and noun phrases in T and θ represents ∉ or ∈.

3. Let θ be any of the relations =, ≠, ⊃, ⊇, ⊄, ⊂ and ⊆. Set formula has
the form of RΔ(pm[Xi]) θ RΔ(pn[Xj]).

4. Let θ be any of the relations =, ≠, <, ≤, ≥ and >. Cardinality formula
has the form of fc(pi) θ Y, where Y may be fc(pj) or just an integer not
less than 0.

5. If Δ, Γ ∈ F, then the negation ¬Δ, the disjunction Δ∨Γ and the con-
junction Δ∧Γ are in F. And,

4.3 Resource Space Calculus 109

6. Let Φ be a range formula over p. Then the quantification (∃Φ)Δ and
(∀Φ)Δ are in F.

It is obvious that each qualifier (∃ or ∀) in F must be associated with a
range formula over a point variable. The expanded forms of (∃Φ)Δ and
(∀Φ)Δ are as follows.

(∃Φ)Δ = ∃p(Φ ∧ Δ)
(∀Φ)Δ = ∀p(¬Φ ∨ Δ)

As with the relational calculus, the range of each point variable in a
formula should be definitely specified (Codd, 1972). For any formula Γ in
F, Γ is a well-formed formula (WFF in simple) over p if Γ has the form of
U1 ∧ ... ∧ Un ∧ V, where

1. U1 through Un are range formulas over n point variables varying from
one another;

2. V belongs to F and satisfies:
a) The range of every free variable except p in V has been specified

by a certain Ui;
b) No rang formula occurs in V.

Then this WFF over p is denoted as Γ(p).

 Let Γ(p) be a WFF formula over p and Xi (1≤i≤n) be a group of axes.
The alpha expression can be defined as follows:

1. p(X1, X2, ..., Xn): Γ(p) is an alpha expression;
2. If both p(X1, X2, ..., Xn): Δ1 and p(X1, X2, ..., Xn): Δ2 are alpha expres-

sions, then the following are alpha expressions.
a) p(X1, X2, ..., Xn): Δ1 ∨ Δ2;
b) p(X1, X2, ..., Xn): Δ1 ∧ Δ2;
c) p(X1, X2, ..., Xn): Δ1 ∧ ¬Δ2.

 p(X1, X2, ..., Xn) is called the target point and the logical expression fol-
lowing the colon is called the qualification. The semantics of the alpha ex-
pression p(X1, X2, ..., Xn): Γ(p) is to construct a resource space RS consist-
ing of axes X1, X2, ..., and Xn where for any point p if p satisfies Γ(p) then p
is non-null, otherwise p is null.

 The set AE is defined as the set of all alpha expressions, each of which
can be used to represent a query in a certain resource space system.

110 Chapter 4 Algebra and Calculus of the Resource Space Model

4.3.2 From Resource Space Algebra to Resource Space
Calculus

Each operation in the resource space algebra can be represented by a piece
of alpha expression in the resource space calculus. Thus, we can draw the
conclusion that the resource space calculus has at least as powerful query
capability as the resource space algebra. The following is the alpha expres-
sions corresponding to each operation in the resource space algebra.

Union. RS1∪RS2 ⇔ {p(X1, X2, ..., Xn): RS1(p) ∨ RS2(p)}. This alpha ex-
pression means that each point in the new resource space of RS1∪RS2 is the
union of the corresponding point in RS1 and RS2.

Intersection. RS1∩RS2 ⇔ {p(X1, X2, ..., Xn): RS1(p) ∧ RS2(p)}. This alpha
expression means that each point in the new resource space of RS1∩RS2 is
the intersection of the corresponding point in RS1 and RS2.

Difference. RS1−RS2 ⇔ {p(X1, X2, ..., Xn): RS1(p) ∧ ¬RS2(p)}. This alpha
expression means that each point in the new resource space of RS1−RS2 is
the difference operation on the corresponding point in RS1 and RS2.

Cartesian product. RS1×RS2 ⇔ {p(X1, X2, ..., Xn, Y1, ... Ym):
(∃RS1(p1))(∃RS2(p2))(p[X1]=p1[X1] ∧ ... ∧ p[Xn]=p1[Xn] ∧ p[Y1]=p2[Y1] ∧ ...
∧ p[Ym]=p2[Ym])}. This alpha expression means that the axes of the new re-
source space of RS1×RS2 are the concatenation of the axes of RS1 and RS2.
And each point in RS1×RS2 is the concatenation of the corresponding
points in RS1 and RS2.

Join. RS1⋅RS2 ⇔ {p(X1, …, Xm, Y1, …, Yn, Z1, …,Zk): (∃RS1(p1)) (∃RS2(p2))
(p[X1]=p1[X1] ∧ ... ∧ p[Xm]=p1[Xm] ∧ p[Y1]=p1[Y1]=p2[Y1] ∧ ...
∧ p[Yn]=p1[Y1]=p2[Yn] ∧ p[Z1]=p2[Z1] ∧ ... ∧ p[Zk]=p2[Zk])}. This alpha ex-
pression means that the axes of the new resource space of RS1⋅RS2 are the
union of the axes of RS1 and RS2. And each point in RS1×RS2 is the con-
catenation of the corresponding points in RS1 and RS2 without duplicate
axes.

Disjoin. RS(X1, ..., Xt) ⇔ {p(X1, ..., Xt): (∃RS(p1))(p[X1]=p1[X1] ∧ ... ∧
p[Xt]=p1[Xt])}. This alpha expression means that the axes X1, ..., and Xt of
the new resource space is a subset of the axes of RS. For each point p in
the new resource space, p is non-null if and only if there exists one point p1
in RS such that p and p1 have the same projection on X1, ..., and Xt.

4.3 Resource Space Calculus 111

Merge. RS(X1, ..., Xn, X∪Y) ⇔ {p(X1, ..., Xn, X∪Y):
(∃RS1(p1))(p[X1]=p1[X1] ∧ ... ∧ p[Xn]=p1[Xn] ∧ p[X∪Y]=p1[X]) ∨
(∃RS2(p2))(p[X1]=p2[X1] ∧ ... ∧ p[Xn]=p2[Xn] ∧ p[X∪Y]=p2[Y])}. This al-
pha expression means that the first n axes of the new resource space are
the same as RS1 and RS2 and the (n+1)th axis is the merge of the (n+1)th
axes of RS1 and RS2. Each point in the new resource space is the union of
the corresponding point in RS1 and RS2.

Split. RS(X1, ..., Xn, X[C]) ⇔ {p(X1, ..., Xn, X[C]): (∃RS(p1))(p[X1]=p1[X1]
∧ ... ∧ p[Xn]=p1[Xn] ∧ p[X[C]]=p1[X])}, herein C represents a set of coordi-
nates. This alpha expression means that the first n axes of the new resource
space are the same as RS and the coordinate set C of the (n+1)th axis is a
subset of that of the (n+1)th axes of RS. Any point in the new resource
space comes from RS.

Selection. σF(RS(X1, X2, ..., Xn)) ⇔ {p(X1, X2, ..., Xn): RS(p) ∧ (F ∈ F) ∧
F}. This alpha expression means that each point in the new resource space
should make F true.

Division. RS1(A, B)[÷B]RS2(B, C) ⇔ {p(A): (∀RS2(p2)) (∃RS1(p1))
(p[A]=p1[A] ∧ p2[B]=p1[B])}, herein A=X1, …, Xm, B=Y1, …, Yt and C=Z1,
…, Zn. This alpha expression means that the axes of the new resource
space of RS1(A, B)[÷Β]RS2(B, C) are axis list A. For any point p’ in the
new resource space, p’ is non-null if and only if for any non-null point p″
in RS2 there exists a non-null point p in RS1 such that p’[A]=p[A] and p″
[B]=p[B].

4.3.3 From Resource Space Calculus to Resource Space
Algebra

Just as the relational calculus, the resource space calculus can be used to
represent what is a query for, but it does not provide the process to answer
the query. This section proposes an algorithm for converting any alpha ex-
pression in the resource space calculus to a corresponding series of opera-
tions in the resource space algebra.

For a given alpha expression p(X1, X2, ..., Xn): Δ, where p(X1, X2, ..., Xn)
is the target point and Δ is the qualification, we use the following algo-
rithm based on Codd's reduction algorithm to transform resource space
calculus to resource space algebra (Codd, 1972).

112 Chapter 4 Algebra and Calculus of the Resource Space Model

(1) Suppose that X1, X2, ..., Xn come from RS1, RS2, …, RSn respectively, all
of which are resource spaces in Δ. For RSi (1≤ i ≤ n), we use RSi

* to
denote the union of all the resource spaces union-compatible with RSi
in Δ. Create a new resource space RS which is the projection of the re-
source space RS1

* × RS2
* × …× RSn

* on axes X1, X2, ..., and Xn. The
qualification Δ is transformed into Δ’=RS(p) ∧ Δ.

(2) Since the qualification Δ’ is the logical concatenation of a series of
WFF over p using ∧, ∨ and ∧¬, the qualification can be easily trans-
formed into the disjunctive normal form. In this transformation proc-
ess, any formula preceded by qualifiers (∃ or ∀) is viewed as a whole
and any logical operators in this type of formulas are not concerned.
Each conjunctive clause in this disjunctive normal form is a WFF over
p. For each conjunctive clause (WFF over p) U1 ∧ ... ∧ Up ∧ V do
from step (3) to step (8).

(3) In U1 ∧ ... ∧ Up ∧ V, for each Uj (1≤ j ≤ p) and the range formula Ui
(p+1≤ i ≤ q) associated with each qualifier (∃ or ∀), apply the follow-
ing rewriting rules in the given order.

(a) Substitute each rang formula RSk(pk) over pk by the resource
space RSk.

(b) Substitute ∨ and ∧¬ by ∪ and – respectively.
(c) Substitute ∧ by ∩.
Then we can use a series of set-related operations (union, intersec-

tion and difference) to change Uj (1≤ j≤ q) into Sj such that Sj only con-
tains a new resource space. For example, if Uj = RS1(p) ∨ RS2(p), then
Sj = RS1 ∪ RS2.

(4) If there exists a Sj (1≤ j ≤ p) such that Sj = ∅, then make each point in
RS null and jump to step (9). For each existence qualifier ∃, if its corre-
sponding range formula Sj is equal to ∅, then replace the formula
within the scope of this existence qualifier with Boolean constant F.
For each universal qualifier ∀, if its corresponding range formula Sj is
equal to ∅, then replace the formula within the scope of this universal
qualifier with Boolean constant T.

The replacement is based on the following two facts:
(a) If Sj = ∅, then (∃Sj)Δ = ∃p(p∈Sj ∧ Δ) = ∃p(F ∧ Δ) = F.
(b) If Sj = ∅, then (∀Sj)Δ = ∀p(p∉Sj ∨ Δ) = ∀p(T ∨ Δ) = T.

(5) Transform V to its prenex disjunctive normal form V'. Assume that V'
has q quantifiers (∃ or ∀) and let each quantifier in V' be denoted as Qj
(1≤ j ≤ q) from left to right and the range formula associated with Qj be
Sp+j. For example, V = ∀(RS1(p1))(p1[Xi]≤’2000’) ∨ ∃(RS2(p2))
(p2[Xj]≠’male’) can be transformed into V’ = ∀(RS1(p1)) ∃(RS2(p2))

4.3 Resource Space Calculus 113

(p1[Xi]≤’2000’ ∨ p2[Xj]≠’male’). Each of the conjunctive clauses of V’
will be denoted as Pi (1≤ i ≤ n). For each Pi (1≤ i ≤ n) do step (6).

(6) Construct a WFF over p, S1 ∧ ... ∧ Sp ∧ Q1+p(S1+p(p1+p))...
Qq(Sq(pq))(Pi), for each Pi (1≤i≤ n). Without the loss of generality, we
suppose that S1 is the range formula of p. Let Q1+p(S1+p(p1+p))...
Qq(Sq(pq))(Pi) be denoted as Vi. For each U1 ∧ ... ∧ Up ∧ Vi (1≤ i ≤ n),
do the following steps.
(6.1) Form the defining equation RSi = S1 × ... × Sp+q.
(6.2) Pi consists of the conjunction of a series of coordinate formulas,

set formulas and cardinality formulas. For resource space RSi,
execute the selection operation on the restrictions Pi:
σF(RSi)={p | p∈RSi ∧ Pi}. The result of the selection operation
is denoted as RSi’.

(7) Merge all the resource spaces RSi' (1≤ i ≤ n) and the result is denoted as
RS'.

(8) For any Qj (1≤ j ≤ q) and the resource space Sj+p in its corresponding
range formula, we use RS'.X* and Sj+p.X* to denote the sets of all axes
of RS’ and Sj+p respectively.

For j from q to 1, do the following iteration:
RS' = πRS'.X* − Sj+p.X*RS' if Qj=∃
RS' = RS'[÷Sj+p.X*]Sj+p if Qj=∀

After q step operations on RS', the eventual result is denoted as RS''.
Then do the following transformation:

RS'' = S1 × πRS(RS'')
Resource space RS'' is exactly the result resource space that one of the
conjunctive clauses in step (2) desires.

(9) Merge all the resource spaces that all conjunctive clauses in step (2)
produce through step (3) to step (8). The result resource space will be
exactly the result resource space the original alpha expression desires.

Theorem 4.5. For any alpha expression p(X1, X2, ..., Xn): Δ, after the above
transformation any point satisfying Δ will appear in the result resource
space and none of the points making Δ false will be in the result resource
space.

Proof. For alpha expression p(X1, X2, ..., Xn): Δ, we first construct RS as
the target resource space according to X1, X2, ..., and Xn. It is obvious that
the desired resource space is a subset of RS. That is any point p making Δ
true appears in RS. So transform Δ to Δ’=RS(p) ∧ Δ and then the original
alpha expression will be transformed into p(X1, X2, ..., Xn): Δ’. After step

114 Chapter 4 Algebra and Calculus of the Resource Space Model

(1) and step (2) in the transformation, Δ’ will be transformed into its dis-
junctive normal form involving m pieces of conjunctive clauses (WFFs
over p).

If p satisfies Δ, we will prove that after the transformation p still exists
in the result resource space. Since p makes Δ’ true, there at least exists one
conjunctive clause of Δ’ that p satisfies. Let the conjunctive clause be U1
∧ ... ∧ Up ∧ V. After step (3), (4) and (5) of the transformation, this con-
junctive clause will become S1 ∧ ... ∧ Sp ∧ Q1(S1+p(p1+p))...Qq(Sq+p(pq+p))(P1
∨ P2 ∨ …∨ Pn), where Qj (1≤ j≤q) represents qualifies (∃ or ∀) and
Q1(S1+p(p1+p))...Qq(Sq+p(pq+p))(P1 ∨ P2 ∨ …∨ Pn) is the prenex disjunctive
normal form of V. After step (6) and (7), we can get the resource space RS'
corresponding to the above conjunctive clause U1 ∧ ... ∧ Up ∧ V. In step
(8), we suppose that after the iteration from Qq to Qj+1, the resource space
is transformed into RS’tmp and the point p is still in RS’tmp. Now, we will
prove that after Qj the point p still exists in the result resource space.

a) We firstly suppose that Qj is an existence qualifier ∃. Since p is still in
RS’tmp, there at least exist one point p’ in Sp+j such that there will exist
a point p” in RS’tmp the projection of which on RS.X* is p and the pro-
jection on Sp+j.X* is p’. So point p”[RS'.X* − Sj+p.X*] also appears in
the resource space πRS'.X* − Sj+p.X*RS’tmp.

b) Then we suppose that Qj is a universal qualifier ∀. Since Qj is a uni-
versal qualifier, for any point p’ in Sp+j there will exist a point p” in
RS’tmp such that the projection of p” on RS.X* is p and the projection
of p″ on Sp+j.X* is p’. So point p”[RS'.X* − Sj+p.X*] also appears in the
resource space RS’tmp[÷Sj+p.X*]Sj+p.

From a) and b), we can conclude that after step (8) of the transformation
there at least exists one point p” in RS” such that the projection of p” on
RS.X* is p. So p will appear in the final result resource space RS.

Similarly, we can prove that any point making Δ false will not be in the
result resource space. 

The Resource Space Calculus proposed above has the following differ-
ence from the relational calculus (Codd, 1972).

1. The resource space calculus has different operational objectives with
the relational calculus. The operational objectives in the resource
space calculus includes resource space, axis, coordinate, point and re-
source-entry which represent different classification granularity of re-
sources, while the relational calculus takes table, tuple, attribute and
atomic value as the basic operational units.

4.3 Resource Space Calculus 115

2. In the relational calculus, there exists only one type of value-based
comparison formulas called join terms. On the other hand, there exist
three types of comparison formulas ⎯ coordinate formula, cardinal-
ity formula and set formula. Herein, coordinate formula and cardinal-
ity formula is value-based comparison formulas and set formula is set-
based comparison formula. Richer semantics can be expressed by the
resource space calculus.

3. The resource space calculus is used to express totally different seman-
tics from the relational calculus. The classification semantics among
resources can be efficiently expressed by using the Resource Space
Model. As a basic element, a point in the resource space calculus is
used to represent a class of resources. In the relational calculus, a tu-
ple is used to represent just a single resource (a record).

4.3.4 Transformation from Relational Model to Resource Space

The Resource Space Model was proposed as a parallelism of the RDBM.
In fact, a relational database system excluding null information can be rep-
resented by a set of resource spaces. Thus, the proposed resource space al-
gebra and resource space calculus have at least as powerful expressiveness
as the relational model. The following is the transforming process from a
relational table to a resource space.

1. For each table T(A1, A2, …, An) in a given relational database system,
create a resource space RS(X1, X2, …, Xn) by naming resource space
after the table name, establishing a one-to-one relationship between
the axes of the resource space and the attributes of the table (e.g., Ai
corresponds to Xi), and naming each axis of this resource space after
the corresponding attribute name. For each tuple t(x1, x2, …, xn) in the
table, insert xi (1≤i≤n) as a coordinate into the axis Xi if no coordinate
duplication exists. And then insert a resource-entry into the point p(x1,
x2, …, xn) to represent the tuple t(x1, x2, …, xn). If a tuple t(x1, x2, …,
xn) is deleted from the table, just delete the resource-entry residing in
the point p(x1, x2, …, xn) and leave this point and corresponding
coordinates alone.

2. For each table T(A1, A2, …, An), let A1… Am (1≤m≤n) be the key of T.
Then, the axes X1… Xm will be set as the key of RS. Thus, there do not
exist any two different points p(x1… xm, xm+1…xn) and p’(x1… xm,
x’m+1…x’n) such that both p and p’ contain resource-entries
simultaneously. The functional dependency in the relational database
has been represented by the classification relationship in the RSM.

116 Chapter 4 Algebra and Calculus of the Resource Space Model

Since the one-to-one mapping between tables and resource spaces as
well as between operations on relational table and operations on the re-
source space, the basic operations (Union, Difference, Cartesian Product,
Selection and Project) in relational database can be easily simulated by Re-
source Space operations: Merge, Difference, Join, Selection and Projection
(Zhuge, 2004a). Thus, any information represented by the relational model
can be easily managed by the Resource Space Model.

Theorem 4.6. For any relational database system without null information,
the generated resource spaces satisfy the first/second/third normal forms of
the Resource Space Model.

Proof. Let T(A1, A2, …, An) be a relational table and RS(X1, X2, …, Xn) be
the generated resource space. According to the creation process of RS, it is
clear that RS satisfies the first and second normal forms. In the following,
we prove that RS conforms to the third normal form. All resources (tuples)
managed by RS come from the table T. For any axis Xi and any tuple t in T,
there exists a coordinate on Xi such that this coordinate is the projection of
t on Xi. So t∈R(Xi) holds. On the other hand, R(Xi) only contains the re-
sources derived from the tuples in T. Thus, for any two axes Xi and Xj,
R(Xi)=R(Xj) holds. We can conclude that Xi⊥Xj holds. So RS satisfies the
third normal form. 

4.4 Summary

The resource space algebra enables users or applications to directly and
easily obtain the desired resources from the source resource spaces. The
resource space calculus is a type of applied predicate calculus and provides
a declarative style for describing the desired resources. The equivalence of
the resource space algebra and the resource space calculus is discussed.
We have shown that the Resource Space Model has at least as powerful
expressive capability as the relational model by transforming relations into
resource spaces. The algebra and calculus of the Resource Space Model
are important part of the theory of the Resource Space Model. They are
also the basis of the query language of the Resource Space Model.

Chapter 5 Searching Complexity of Resource
Space Model

Given a resource space, it is important for us to know the relationship be-
tween the searching efficiency and its dimensions as well as the relation-
ship between the searching efficiency and the coordinates at every axis. Is
the dimension of a resource space the higher the better, the lower the bet-
ter, or, other cases? Is the distribution of coordinates at every axis the
evener the better? The answers help design, analyze and understand
searching resource space.

5.1 Basic Concepts and Formulas

When a user gives a query Q(X1=q1, …, Xn=qn), what is the complexity of
searching the point Q(X1=q1, …, Xn=qn) in resource space RS(X1, …, Xn)?
The basic approach is to check the axis and coordinate for qi (i=1, …, n)
one by one. Here focuses on the intrinsic complexity of searching in re-
source space based on comparison between names rather than any specific
searching algorithms.

5.1.1 On Computation Complexity

The computation complexity studies intrinsic difficulty on the cost of
computing resources (e.g., time and space) to solve problem. To study the
computation complexity, first we need a computation model to illuminate
which operations or steps are permissive and their cost. Turing machine
and random access machine are common computing models. With com-
mon computing models, we can study the upper bound and lower bound of
complexity of problems or seek the optimal algorithm (Aho et al., 1983).

The computation complexity of a problem is the function of the scale of
the problem, so firstly we need to define the scale of a problem. For matrix

118 Chapter 5 Searching Complexity of Resource Space Model

operation, the order of matrix can be defined as the scale of problem. If the
number of operations or steps needed to solve a problem is the exponential
function of the scale of problem, then the problem is regarded as having
the complexity of exponential time. If the number of operations needed is
the polynomial function of the scale of problem, then the problem is re-
garded as having the complexity of polynomial time. The problems with
polynomial time algorithm generally can be solved easily, and the algo-
rithms with polynomial time complexity are regarded as good algorithms.
In the theory of computation complexity, the class of problems with com-
plexity of polynomial time is denoted as P. There are many problems for
which the best algorithms known have complexity of exponential time.
Such problems exist in such areas as combinatorial, graph theory and op-
eration research, and we do not know whether there exist polynomial time
algorithms for them. There is a big class of these problems in practice
whose computation complexities are equivalent. If we can solve one of
them in polynomial time then we can solve all of them in polynomial time.
The class is called the NP-complete problem class.

For some problems, the upper bound of their complexity is the cost of
the best algorithm known so far, but the lower bound can only be built by
theoretical proof. To get the lower bound of complexity of a problem, we
need to prove that there does not exist any algorithm whose complexity is
smaller than the lower bound. It is obvious that building lower bound is
much harder than building upper bound. To find the upper bound of the
complexity of a given problem, we only need to study the complexity of
one specific algorithm. But if we want to get the lower bound of complex-
ity of the same problem, we must study all the algorithms which can solve
this problem (this is usually impossible).

From the perspective of computation complexity, the main task of the
design and analysis of algorithm is to build the upper bound (Knuth,
1997b). Suppose n is the scale of problem, the following are some com-
mon problems and the upper bounds of complexity:

1. In the worst case, the comparison-based sorting of n different ele-
ments needs O(nlgn) comparisons (Knuth, 1997c).

2. The multiplication of matrix of order n needs O(n2.41) times multipli-
cation operations (Robinson, 2005; Strassen, 1969; Cohn and Umans,
2003).

3. The decision of whether a number of n digits is prime needs time
O(nclglglgn) (Knuth, 1997b; Mairson, 1977).

The greatest lower bound and the least upper bound depict the intrinsic
complexity of problem and the best solution known so far. In fact, the

5.1 Basic Concepts and Formulas 119

greatest lower bound is the best lower bound known theoretically and the
least upper bound is the best solution known in the real world, i.e., the best
existing algorithm. A problem’s intrinsic complexity will not change with
the newly discovered greatest lower bound or least upper bound. If the up-
per bound got from an algorithm is equal to the known greatest lower
bound, then this upper bound (or lower bound) is exactly the intrinsic
complexity of the problem. In this case, the algorithm is called optimal in
this sense.

In the problem of sorting based on the comparison between names (sup-
pose all of the names are different), suppose S(n) (n is the scale of prob-
lem) is the number of comparisons must do at least in the worst case. By
building a binary decision tree for this problem, we get a lower bound:

⎡ ⎤)1(
2

lg
2ln

lg!lg)(OnnnnnnS ++−=≥ .

Analyzing the algorithm Binary Insertion (suppose the number of com-
parisons in the worst case is B(n)), we get an upper bound:

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 12lglg)(lg

1
+−== ∑

=

n
n

k
nnknB .

Combining these upper and lower bounds for S(n) can reach:

1
lg

)(lim =
∞→ nn

nS
n

.

So any algorithm (including Binary Insertion) with complexity of nlgn
is asymptotic optimal. But it is desirable to obtain more precise informa-
tion, and from table 5.1 we can see that:

Table. 5.1 Comparison of lower bound and upper bound

n= 1 2 3 4 5

⎡ ⎤ =!lg n 0 1 3 5 7

B(n)= 0 1 3 5 8

120 Chapter 5 Searching Complexity of Resource Space Model

When n=5, the lower bound given by ⎡ ⎤!lg n is 7, but the upper bound
given by B(5) is 8, then S(5) may be 7 or 8. The common algorithms we
know which are asymptotic optimal, including Heap Sort, Merge Sort all
give the upper bound 8 or 9. Then, how many comparisons are necessary
for sorting five elements in the worst case? The answer is 7, but it is not
easy to find a method which only needs 7 comparisons. This method is
now called Merge Insertion due to the advantages of both Merge and In-
sertion. It was first proposed in (Demuth, 1956), and then generalized in
(Ford and Johnson, 1959).

5.1.2 Searching Complexity and Formulas

For the type of problems whose inputs are non-deterministic (there are
many cases of inputs), such as sorting and searching, generally we con-
sider two types of complexity, the worst-case complexity and the average
complexity, denoted as W(n) and A(n) respectively, supposing the scale of
problem is n. Suppose the probability of the occurring of every element in
the set is the same and the probability of a successful searching is 1, then
we have the following conclusions (Baase and Gelder, 2000; Levitin,
2003):

Lemma 5.1 Searching an element K in a sorted set with n elements, any
algorithm (based on the comparison between names) must do at least
⎡ ⎤)1lg(+n comparisons in the worst case.

Lemma 5.2 Searching an element K in a sorted set with n elements, any
algorithm (based on the comparison between names) must do at least

1lg −n comparisons on average.

Lemma 5.3 Searching an element K in an unsorted set with n elements,
any algorithm (based on the comparison between names) must do at least n
comparisons in the worst case.

Lemma 5.4 Searching an element K in an unsorted set with n elements,
any algorithm (based on the comparison between names) must do at least

2
1+n

 comparisons on average.

The above lower bounds are all optimal. For example, the Binary Search
algorithm can get the lower bounds in lemma 5.1 and 5.2, the Sequential
Searching algorithm can get the lower bounds in lemma 5.3 and 5.4.

5.2 Basic Assumptions 121

Here lgn is the base-2 logarithm, logn is the base-10 logarithm, lnn is
the natural logarithm, and n

alog is the base-a logarithm. ⎣ ⎦x is the floor of
x, ⎡ ⎤x is the ceiling of x, and we have: ⎣ ⎦ ⎡ ⎤ 11 +<≤≤<− xxxxx . Spe-
cially, for natural number n, we have: ⎡ ⎤ 1lg)1lg(lg +≤+< nnn and

⎡ ⎤ ⎣ ⎦ 1lg)1lg(+=+ nn (Graham et al., 1989).

For xi≥0, 1≤i≤n, there is a sequence of inequalities (Agarwal, 2000):

n
xxx

n
xxxxxx

xxx

n nnn
n

n

22
2

2
121

21

21

111
+++

≤
+++

≤≤
+++

LL
L

L

.

For a function f(x) defined on the real domain, if f ′′(x)>0 or f ′′(x)<0,
then f(x) is a concave function (or convex function), f(x) has a unique
minimum (or maximum) on the definition domain, and we have the fol-
lowing formula (Agarwal, 2000):

))(1)1((,)(1)1(
1111

∑∑∑∑
====

≥≤
n

i
i

n

i
i

n

i
i

n

i
i xf

n
x

n
fxf

n
x

n
f .

A real-valued function f(x) is continuous on interval [a, b] and satisfying
f(a)f(b)<0, then there exists a zero point of f(x) in the interval (a, b)
(Strang, 1991).

On the increasing order of function, we have: lnlnn< lnn < nc < an (a>1,
c>0), and for any ε >0, we have:

εεε)(,)(ln,lnlnln ncc annnnn <<< .

5.2 Basic Assumptions

For an n-dimensional resource space RS(X1, X2, …, Xn), we assume that the
n axes are stored in the order (X1, X2, …, Xn), but they are not sorted in al-
phabet. For every axis Xi=(Ci1, Ci2, …, Cij), the coordinates on the axis are
also stored in the order (Ci1, Ci2, …, Cij) and are not sorted in alphabet.
Here the comparison between coordinate and the query name is regarded
as the basic operation.

Suppose N is the number of all of the points in the resource space RS(X1,
X2, …, Xn), |Xi| is the number of coordinates on axis Xi, 1≤i≤n, then

122 Chapter 5 Searching Complexity of Resource Space Model

NX i

n

i
=∏

=
||

1
. We fix N and then study the relationship between the

searching complexity and the dimension n as well as the relationship be-
tween searching complexity and the distribution of coordinates on every
axis. Assume that points are as basic search units, axes are unsorted set,
and the order of axes is unknown, then we have the following theorem.

Theorem 5.1. Given a resource space RS(X1, X2, …, Xn), where every Xi
and its coordinates are unsorted in alphabet, 1≤i≤n. Suppose the number of
coordinates on axis Xi is |Xi|, then any comparison-based algorithm to find
the answer to Q(X1=q1, …, Xn=qn) in RS(X1, X2, …, Xn) must do at least

∑
=

+
+ n

i
iXnn

1
||

2
)1(

 times of comparison in the worst case.

Proof. To get a point Q(X1=q1, …, Xn=qn) in the space RS(X1, X2, …, Xn),
search needs to check every qi on axis Xj, 1≤i≤ n. Suppose Ti is the number
of comparisons needed to find qi, then, the times of comparison needed to

find point Q(X1=q1, …, Xn=qn) is ∑
=

=
n

i
iTT

1

. To find q1, we need to deter-

mine the axis Xi it belongs to first, then search q1 on Xi. Since there are in
all n axes which are not sorted in alphabet, so it takes at least n times of
comparisons to find a specific axis Xi in the worst case. There are |Xj| co-
ordinates not sorted in alphabet on axis Xi, so searching for q1 among them
needs at least |Xj| times of comparison in the worst case. So finding q1
needs at least n+|Xj| times of comparison in the worst case. We can use the
same procedure to find q2, the only difference is we only need to search the
remaining n−1 axes. Then, finding q2 needs at least n−1+|Xj| times of com-
parisons in the worst case. So in the worst case, finding point Q(X1=q1, …,

Xn=qn) needs at least ||
2

)1(||1)1(
11

∑∑
==

+
+

=+++−+
n

i
i

n

i
i XnnXnn L times

of comparison. 

Theorem 5.1 shows that the searching complexity is related to the di-
mension and the distribution of coordinates on axes. Then, what is the rela-
tionship between the searching complexity and the changing of the dimen-
sion? And what is the relationship between the searching complexity and
the distribution of coordinates on every axis? The following two parts an-
swer these questions.

5.3 Distribution of Coordinates on Axes 123

Corollary 5.1. To find the answer to Q(X1=q1, …, Xk=qk) in RS(X1, X2, …,

Xn) must do at least ∑
=

+
+−−

−
+ k

i
iXknknnn

1
||

2
)1)((

2
)1(

 times of

comparison in the worst case (k≤n).

5.3 Distribution of Coordinates on Axes

Because the number of points N in resource space is fixed, the distribution
of coordinates on axes indicates the possible case of the number of coordi-
nates on every axis when N is given. For example, if the number of points

N is 8 and the dimension of space is 3, according to NX i

n

i
=∏

=
||

1
, then all

the possible distributions of coordinates on axes are: (1, 2, 4), (1, 1, 8) and
(2, 2, 2). We can see that the distribution (1, 1, 8) is the most uneven, al-
most all of coordinates locate on only one axis. The distribution (2, 2, 2) is
the most even, the number of coordinates on every axis is equal. Then
from the perspective of searching complexity, which case of distribution is
better? The following will answer this question.

5.3.1 Best Distribution of Coordinates

First we give the following theorem:

Theorem 5.2. Given a class of resource spaces RS(X1, X2, …, Xn), where
every Xi and its coordinates are unsorted in alphabet, 1≤i≤n. Let N be the
number of points in the space and |Xi| be the number of coordinates on axis
Xi, n be fixed dimension and every |Xi| be variable. Assume that the num-
ber of comparisons for any comparison-based algorithm for searching
Q(X1=q1, …, Xn=qn) in the resource space must do at least in the worst case

is W(n). Then, Min W(n)= nnNnn 1

2
)1(

+
+

, and only when |X1| = |X2| = …=

|Xn|, this minimum can be reached.

Proof. Given any class of resource spaces RS(X1, X2, …, Xn), according to

theorem 5.1, W(n)= ∑
=

+
+ n

i
iXnn

1
||

2
)1(

. Because the space dimension n is

124 Chapter 5 Searching Complexity of Resource Space Model

fixed, we only need to find the minimum of ∑
=

n

i
iX

1
|| under the constraint:

NX i

n

i
=∏

=
||

1
. According to the Mean Inequalities [R. P. Agarwal, Differ-

ence Equations and Inequalities, 2nd edition, CRC, 2000]:

,21
21 n

xxxxxx nn
n

+++
≤

L
L xi≥ 0, 1≤i≤ n, (and the equality holds

only when x1= x2= …= xn), so we have:
nn

i

n

i
ii xnx

1

1 1

)(∑ ∏
= =

≥ . Replace every

xi with |Xi|, we can get: n
nn

i

n

i
ii nNXnX

1
1

1 1

)||(|| =≥∑ ∏
= =

, which can con-

clude that Min W(n)= nnNnn 1

2
)1(

+
+

, and only when |X1| = |X2| = … =

|Xn|, the minimum can be reached. 

Theorem 5.2 shows that if the space dimension keep fixed, then when
the distribution of coordinates on every axis is the most even, the searching
complexity in the worst case is the least, i.e., in the above example the dis-
tribution (2, 2, 2) is the best. It is worth to note that for some N and space

dimension n, the lower bound nnNnn 1

2
)1(

+
+

 can never be reached. For

example, given N=8 and n=4, the best distribution (2, 2, 2) cannot be
reached. And for N=12 and space dimension n=3, no matter what the dis-
tribution of coordinates is, the minimum in the theorem cannot be reached.
This means that only when the given N and n satisfy some conditions, the
theorem would hold. The following corollary gives the conditions that N
and n should satisfy.

Corollary 5.2. Given a class of resource spaces RS(X1, X2, …, Xn), where
every Xi and its coordinates are unsorted in alphabet, 1≤i≤n. Let N be the
number of points in the space and |Xi| be the number of coordinates on axis
Xi, n be fixed dimension and every |Xi| be variable. Assume that the num-
ber of comparisons for any comparison-based algorithm to find a point
Q(X1=q1, …, Xn=qn) in the resource space must do at least in the worst case

5.3 Distribution of Coordinates on Axes 125

is W(n). Then Min W(n)= nnNnn 1

2
)1(

+
+

, and this minimum can be

reached if and only if n ≤ lgN and N
nlog is an integer.

Proof. (1) Suppose n ≤ lgN and N
nlog is an integer. Let N

nlog =S, accord-

ing to n ≤ lgN, we get N
nlog ≥ 2, i.e., S ≥ 2. Now we only need to let |X1| =

|X2| = … = |Xn|=S, then the lower bound in theorem 5.2 can be reached.

(2) Suppose the lower bound can be reached, then according to theorem

5.2, |X1| = |X2| = … = |Xn|, let the value be S, from NX i

n

i
=∏

=
||

1
 we get

N=Sn, then N
nlog =S is an integer. Because N >1, S cannot be 1, then S ≥ 2,

N ≥ 2n, we can get n ≤ lgN. So now both n ≤ lgN and N
nlog is an integer

hold. 

5.3.2 The Worst Distribution of Coordinates

First we give the following theorem:

Theorem 5.3. Given a class of resource spaces RS(X1, X2, …, Xn), where
every Xi and its coordinates are unsorted in alphabet, 1≤i≤n. Suppose N is
the number of all the points in space and |Xi| is the number of coordinates
on axis Xi, the space dimension n is fixed and every |Xi| is variable. Let the
times of comparisons for any comparison-based algorithm to find an an-
swer to query Q(X1=q1, …, Xn=qn) in the resource space must do at least is

W(n) in the worst case. Then Max W(n)= 1
2

3
2

2

−++
nnN , and only when

some |Xi|=N, this maximum can be reached.

Proof. Given any RS(X1, X2, …, Xn) in the class of resource spaces, accord-

ing to theorem 5.1, W(n)= ∑
=

+
+ n

i
iXnn

1
||

2
)1(

. Because the space dimen-

sion n is fixed, we only need to find the maximum of ∑
=

n

i
iX

1
|| under the

constraint: NX i

n

i
=∏

=
||

1
. Theorem 5.2 has shown that in the case of the

distribution of coordinates on every axis is the most even (|X1| = |X2| = … =

126 Chapter 5 Searching Complexity of Resource Space Model

|Xn|), the minimum can be reached, so we can guess that when the distribu-
tion of coordinates on every axis is the most uneven, we can get the maxi-

mum of∑
=

n

i
iX

1
|| . As NX i

n

i
=∏

=
||

1
, we guess the most uneven case is: for

some i, |Xi|=N and |Xj|=1 for any j≠i. In this case, ∑
=

n

i
iX

1
|| =N + n−1, so

we only need to show that for any distribution of |Xi|, 1≤i≤n, we have:

∑
=

n

i
iX

1
|| ≤ N + n−1. In the following we will prove this, first we have:

∑∑∑
>==

+=
1||1||1

||||||
kj X

k
X

j

n

i
i XXX ， (5.1)

As NX i

n

i
=∏

=
||

1
, then |Xi| cannot all be 1. On the right side of (5.1) we

have: ∑
=1||

||
jX

jX ≤ n−1. As every |Xj| is 1, so NX
kX

k =∏
>1||

|| . Then we only

need to show that NX
kX

k ≤∑
>1||

|| , i.e., ≤∑
>1||

||
kX

kX ∏
>1||

||
kX

kX . We use

mathematical induction to prove this.

We only need to show that for any natural number m, |Xk|>1, 1≤ k≤ m,

∏∑
==

≤
m

k
k

m

k
k XX

11
|||| holds. When m=1, it is obvious.

 Suppose m=p, ∏∑
==

≤
p

k
k

p

k
k XX

11

|||| holds. When m=p+1, we have:

∏∏∏∏
=

+
==

+

+

=

−+=×=
p

k
kp

p

k
k

p

k
kp

p

k
k XXXXXX

1
1

11
1

1

1

||)1|(||||||||| .

5.3 Distribution of Coordinates on Axes 127

Because 2||
1

≥∏
=

p

k
kX and 2|| 1 ≥+pX , we have:

 ||)1|(|2||)1|(| 11
1

1 ++
=

+ ≥−≥− ∏ pp

p

k
kp XXXX , which concludes:

 ∑∑∏∏∏
+

=
+

==
+

=

+

=

=+≥−+=
1

1
1

11
1

1

1

1

||||||||)1|(|||||
p

k
kp

p

k
k

p

k
kp

p

k
k

p

k
k XXXXXXX .

When m=p+1, the conclusion also holds. According to the proof process,
we can see that the conditions of the equality holds are: m=1, or m=2 and
|X1| = |X2|=2. The first condition corresponds to the case that some |Xi|=N
and |Xj|=1 for any j≠i. And when m=2, ∑

=1||

||
jX

jX = n−2 < n−1, now

∑
=

n

i
iX

1
|| < N + n−1. So the condition that some |Xi|=N and |Xj|=1 for any

j≠i is the only case satisfying ∑
=

n

i
iX

1
|| =N + n−1.

Combining the above results, we have: ∑
=

n

i
iX

1
|| ≤ N + n−1, so Max

W(n)= 1
2

)1(
−++

+ nNnn
= 1

2
3

2

2

−++
nnN , and only when some

|Xi|=N (in this case |Xj|=1, j≠i), this maximum can be reached. 

Theorem 5.3 shows that if the space dimension is fixed, when the distri-
bution of coordinates on every axis is the most uneven, the searching com-
plexity in the worst case is the highest. Then in the above example, distri-
bution (1, 1, 8) is the worst distribution. It is worth to note that for any

given N and space dimension n, the upper bound 1
2

3
2

2

−++
nnN can

always be reached. According to theorem 5.3, we only need to let some
|Xi|=N and all the other |Xj|=1. For example, for N=12 and space dimension
n=3, let |X1|=12 and |X2|=|X3|=1, then we can get the worst distribution (12,
1, 1).

We have studied the searching complexity in the worst case when the
space dimension is fixed, got the best case (theorem 5.2, the most even dis-
tribution) and the worst case (theorem 5.3, the most uneven distribution),

128 Chapter 5 Searching Complexity of Resource Space Model

these are two extreme cases. Intuitively, in the case that the distribution of
coordinates is the most uneven, all information is on one axis, so the
searching is more difficult. This shows that to design a resource space, we
should keep the distribution of coordinates on every axis as even as possi-
ble (in the sense of search efficiency).

Then, we can guess whether the following conclusion holds: the distri-
bution of coordinates more uneven, the searching complexity the higher?
How to evaluate the unevenness? First, we can think of the variation in the
probability and statistics. According to the above proof process, we can
guess whether the following conclusion holds: given natural numbers N
and n, if two sequences of natural numbers M=(m1, m2, …, mn) and Y=(y1,

y2, …, yn) satisfying =∏
=

i

n

i
m

1
Nyi

n

i
=∏

=1
and Var(M) < Var(Y), then whether

we have ∑
=

n

i
im

1

<∑
=

n

i
iy

1

, i.e., E(M) < E(Y)?

Intuitively, the above conclusion should hold, in fact when n=2, we have
the following corollary:

Corollary 5.3. Given natural number N, if two sequences of natural num-
bers M=(m1, m2, …, mn) and Y=(y1, y2, …, yn) satisfying

=∏
=

i
i

m
2

1
Nyi

i
=∏

=

2

1
 and Var(M) < Var(Y), then E(M) < E(Y) holds.

Proof. According to the definition of expectation and variation, we have

E(M)=(m1+m2)/2, Var(M)=E((M−E(M))2)=E(M2)−(E(M))2. Then,

Var(M) < Var(Y) ⇒ E(M2)−(E(M))2 < E(Y2)−(E(Y))2.

Replace E(M) with (m1+m2)/2, we can get

2
21

2
2

2
1)(

4
1)(

2
1 mmmm +−+ < 2

21
2
2

2
1)(

4
1)(

2
1 yyyy +−+ .

Which can be simplified is)2(21
2
2

2
1 mmmm −+ <)2(21

2
2

2
1 yyyy −+ .

According to m1m2=y1y2=N, adding 4m1m2 to the left side of the above
inequality, adding 4y1y2 to the right side, we can get:

)2(21
2
2

2
1 mmmm ++ <)2(21

2
2

2
1 yyyy ++ . i.e.,

5.4 The Changing of Space Dimension 129

2
21)(mm + < 2

21)(yy + ⇒)(21 mm + <)(21 yy + ⇒ E(M) < E(Y) holds.



Above corollary shows that when n=2, the conclusion holds. Then
whether the conclusion still holds when n ≥ 3? We have the following
counterexample: given N=1944 and n=3, sequences M=(6, 18, 18) and

Y=(9, 9, 24) satisfying =∏
=

i

n

i
m

1
Nyi

n

i
=∏

=1
, and Var(M)=32, Var(Y)=50,

also satisfying Var(M) < Var(Y).But E(M) = E(Y)=14 does not satisfy
E(M) < E(Y). This shows that the conclusion does not hold when n=3. Ac-
cording to this counterexample, we can construct counterexamples for any
given n (n>3), so our guess does not hold when n ≥ 3.

5.4 The Changing of Space Dimension

We have studied the relationship between the searching complexity and
the distribution of coordinates on every axis when the dimension of re-
source space is fixed. When changing dimension, what is the relationship
between the searching complexity and the change of dimension? In the
perspective of searching complexity, the dimension of resource space is
the higher the better, or the lower the better? This section answers these
questions.

5.4.1 Relationship between Dimension and Searching
Complexity

Theorem 5.4. Given a class of resource spaces RS(X1, X2, …, Xn), where
every Xi and its coordinates are unsorted in alphabet, 1≤i≤n. Suppose N is
the number of points in space and |Xi| is the number of coordinates on axis
Xi, and the space dimension n and every |Xi| are all variable. Let f(n) be the
Min W(n) in theorem 5.2, then there exists a unique critical dimension n0
(1< n0 < lgN), such that if n<n0, f(n) decreases according to the increase of
n; if n>n0, f(n) increases according to the increase of n.

Proof. When the space dimension n is fixed, according to theorem 5.2,

f(n)=Min W(n)= nnNnn 1

2
)1(

+
+

. Then we study the properties of f(n) ac-

130 Chapter 5 Searching Complexity of Resource Space Model

cording to the changing of dimension n. Let f(x)= xxNxx 1

2
)1(

+
+

, x is real

and 1≤ x ≤ lgN, then we only need to study the properties of f(x), then dis-
cuss its values on integers. The differential of f(x) is:

2
1)ln1()('

1

+−+=
x
NNxxf x .

Then f ′(1)=1.5+N(1−lnN)<0 and f ′(lgN) =
2
1)

lg
ln1(2lg +−+

N
NN >0. It

is obvious that f ′(x) is continuous, so according to the median theorem of
continuous functions [G. Strang, Calculus, Wellesley-Cambridge, 1991],
there exits a zero point of f ′(x) between 1 and lgN. Then we can get the
differential of f ′(x) again:

3

21

2

1

2

1 ln1)ln1(1lnln1)(''
x

NN
x
N

x
NN

x
NNxf xxx +=−

−
++= .

It is obvious that f ′′(x)>0, then f(x) is a concave function and f ′(x) is
strictly increasing, so the zero point of f ′(x) between 1 and lgN is unique.
Let the zero point be Z, since f(x) is concave, we can get that f(Z) is the
minimum of f(x) between 1 and lgN, and when x<Z, f(x) is strictly decreas-
ing, when x>Z, f(x) is strictly increasing. If Z is an integer, let n0=Z. If Z is
not an integer and ⎣ ⎦ ⎡ ⎤)()(ZfZf < , let n0= ⎣ ⎦Z , else let n0= ⎡ ⎤Z . Then
we have that n0 is the unique minimum point of f(n), and if n<n0, f(n) de-
creases with the increasing of n; if n>n0, f(n) increases with the increasing
of n. 

Theorem 5.4 shows that from the perspective of searching complexity,
the space dimension is not the higher the better, and is not the lower the
better either. There is a unique critical dimension, at first the searching
complexity in the worst case decreases according to the increasing of space
dimension, when space dimension reaches the critical dimension, the
searching complexity in the worst case increases according to the increas-
ing of space dimension, i.e., the searching complexity in the worst case is
the least when the space dimension is the critical dimension.

In the case of the most uneven distribution of coordinates on every axis,
we have the following corollary:

Corollary 5.4. Given a class of resource spaces RS(X1, X2, …, Xn), where
every Xi and its coordinates are unsorted in alphabet, 1≤i≤n. Suppose N is

5.4 The Changing of Space Dimension 131

the number of points in space and |Xi| is the number of coordinates at axis
Xi, and the space dimension n and every |Xi| are all variable. Let F(n) be
the Max W(n) in theorem 5.3, then F(n) increases according to the increas-
ing of n.

5.4.2 Value of Critical Dimension

Theorem 5.4 only gives the existence of critical dimension, but what is the
value of critical dimension? The following theorem will answer this ques-
tion.

Theorem 5.5. Given a class of resource spaces RS(X1, X2, …, Xn), where
every Xi and its coordinates are unsorted in alphabet, 1≤i≤n. Suppose N is
the number of points in the space and |Xi| is the number of coordinates on
axis Xi, and the space dimension n and every |Xi| are all variable. Let n0 be
the critical dimension in theorem 5.4, then for any ε>0, there exists N0,
such that if N >N0, then we have NnN lnln 0

1 <<−ε .

Proof. According to the proof of theorem 5.4, we only need to estimate the
value of Z. As Z is the unique zero point of f ′(x) between 1 and lgN, we
have:

0
2
1)ln1()('

1

=+−+=
Z
NNZZf Z .

This is a transcendental equation, it is impossible to solve the value of Z
accurately, so we will estimate the value of Z in the next. We will prove
that for any ε>0, if N is big enough, then we have NZN lnln1 <<−ε .
Because f ′(x) is strictly increasing, we only need to show that when N is
big enough, 0)(ln' 1 <− Nf ε and 0)(ln' >Nf . It is clear that f ′(lnN)
=0.5 + lnN>0. When 1≥ε , 0)(ln' 1 <− Nf ε is obvious. When 1<ε ,

0)(ln' 1 <− Nf ε is equivalent to)1(ln
2
1ln 1ln

1
1 −<+ −− NNN N εε ε , and

because ∞=−

∞→
N

N

ε1lnlim and ∞=
∞→

N
N

εlnlim , there exists N1>0, if N >

N1, then
2
1ln1 >− Nε and 2ln >Nε , which means that

NN εε −− <+ 11 ln2
2
1ln and NN εε ln

2
1)1(ln >− . Now we have:

132 Chapter 5 Searching Complexity of Resource Space Model

NN εε −− <+ 11 ln2
2
1ln < <− NN N εε ln

2
11ln

1

)1(ln1ln
1

−− NN N εε .

So we only need to let Nε−1ln2 < NN N εε ln
2
11ln

1
− , which is equivalent to

NNN εε −<− 1ln
1

21ln4 , get the natural logarithm for both sides, we have:

 N
N

NN ε
εε ln

ln
lnlnln)21(4ln 1 =<−+ − .

Because ∞=−=
∞→∞→

)lnlnlnlnln(lim
lnln

lnlnlim NN
N
N

NN
ε

ε

, we have

∞=−
∞→

)lnln(lnlim NN
N

ε , then ∞=−−
∞→

)lnln)21((lnlim NN
N

εε . So

there exists N2, if N > N2, then 4lnlnln)21(ln >−− NN εε , i.e.,
NN εε lnlnln)21(4ln <−+ holds. If we let N0=Max{N1, N2}, then if

N > N0, we have 0)
ln

ln1(ln2 1
ln

1
1 1 <−+ −
− −

N
NNN N
ε

ε ε , i.e.,

0)(ln' 1 <− Nf ε .

Combining above results, we can get that for any ε>0, there exists N0
such that if N >N0, then NnN lnln 0

1 <<−ε . 

Theorem 5.5 shows that when N is big enough, the critical dimension n0

can approach lnN to any extent. The minimum of f(n) is about:

 NeNNNNNf N lnlnlnln)(ln 2ln
1

2 +=×+=)(ln2 NO= .

5.5 Summary

This chapter discusses the complexity of searching a point in the resource
space based on comparisons. We have studied the relationship between the
searching complexity and the distribution of coordinates on every axis and
reach that: from the perspective of searching complexity, the distribution of
coordinates on every axis is the evener the better. We also discuss the rela-
tionship between the searching complexity and changing the dimension of

5.5 Summary 133

resource space, and conclude that the space dimension is neither the higher
the better, nor the lower the better. There is a unique critical dimension
which is optimal from the perspective of searching, and the value of the
critical dimension is about lnN (N is the number of points in the resource
space). These results are very helpful to design and analyze resource
spaces.

Chapter 6 Resource Space Model Storage

The characteristics of the Resource Space Model require a special storage
mechanism for efficient resource storage and retrieval. A novel multidi-
mensional indexing structure is proposed to realize semantic-based re-
source re-organization and efficient retrieval.

6.1 Current Approaches to Storing Resource Space

Relational tables, XML files and spatial indexing structures could be used
to store resource space, but it is hard to realize semantic integrity and stor-
age efficiency.

The following are two ways of storing resource space in a single rela-
tional table:

1. Let each axis correspond to an attribute of the table, and each coordi-
nate of the corresponding axis corresponds to the attribute value. In
this way, it is hard to represent hierarchical coordinates and to support
efficient multi-attribute search.

2. Let each coordinate correspond to an attribute of the table. The attrib-
ute value is of boolean type. This will result in low utilization ratio of
storage space due to the magnitude of attribute number as well as the
loss of hierarchical semantics.

Fig. 6.1 depicts the transformation from a two-dimensional resource
space into a table with attributes X and Y, and the transformation from a re-
source space into a table with attributes C1, C11, C12, C2, C3, C31, C32 and C4,
by the above two kinds of representation respectively.

It is feasible to represent all the resources in a single XML file. Each
axis or coordinate in resource space corresponds to a tag of XML file. Hi-
erarchical relationships between tags reflect the same semantics as hierar-
chical coordinates. The value of a tag is the list of all the resources belong-
ing to the classification of that tag. Fig. 6.2 is an XML file representing the
resource space described in Fig. 6.1. Tag <C31> is a sphere node whose

136 Chapter 6 Resource Space Model Storage

value is indicated by the retangle node {r1, r2}, which means both resource
r1 and r2 are in the classification of C31. This storage manner is isimilar to
inverted list. Each resource has the same number of copies in XML tree as
the dimensionality of resource space. Such a redundancy requires an addi-
tional cost of integrity maintenace.

Fig.6.1. Two ways of storing resource space by relational table.

Fig. 6.2. An example of using XML file to store resource space.

Most spatial indexing structures are dedicated to such a space that each
dimension has a linear ordering of its coordinates (Gaede and Gnther,
1998). Coordinates in resource space model, however, represent concep-
tual classification along their axes. They are discrete and usually have hi-
erarchical semantic relationships rather than linear order. Datacube in

6.2 Problem Definition 137

OLAP resembles RSM, but it is mainly for online data analysis and statis-
tics.

6.2 Problem Definition

In this chapter, we devise a specific multidimensional access method
named C-tree for resource space storage. It organizes resources by classifi-
cation semantics and stores semantic-close resources in adjoining place of
storage space. Moreover, it preserves hierarchy semantics between con-
cepts.

We state the problem formally as follows:

How to make the underlying index structures represent hierarchy se-
mantics between concepts so as to implement effective and efficient re-
source insertion, deletion, exact query and range query on resource space.

Hierarchy semantics is prevailing in concept classification. It reflects
two important relationships between concepts. One is concept combina-
tion. For example, a car is composed of wheel, engine and fuel. The other
is concept refinement. For example, book is one kind of publication. In
fact, we recognize objects in the real world by such hierarchy semantics in
many situations. If it is preserved in the process of index creation, we can
utilize it to organize resources much better.

The underlying index structures should satisfy the following two goals.

1. The semantic Goal ⎯ the preservation of hierarchical semantics be-
tween concepts. Hierarchy semantics between concepts should be kept
in the underlying structure. Concepts and their hierarchy relationships
are designed by system managers according to classification semantics.
The design process of RSM already refines resource organization to a
certain extent. The normal forms of RSM guarantee the quality of re-
source classification at the logical level. Meanwhile, it matches
people’s thinking way of resource organization.

2. The operation Goal ⎯ efficient resource operations including inser-
tion, deletion, exact query and range query. The reason of preserving
the hierarchical semantics of resource space is that the underlying in-
dexing structure should be guided by such semantics in the process of
resource insertion, deletion and query.

138 Chapter 6 Resource Space Model Storage

6.3 System Architecture

An overview of system architecture is depicted in Fig. 6.3. It includes four
major components: RSM Schema Definition Module, Resource Operation
Input Module, RSM Schema Tree Module, and Physical Storage Space
Module.

RSM Schema Definition Module is responsible for the input of RSM
schema in the format of RS(X0(C00, C01, ..., C0p), X1(C10, C11, ..., C1q), ...,
Xn-1(Cn-1 0, Cn-1 1, ..., Cn-1 r)). We use C(C0, ..., Ct) to represent the hierarchy
relationships between parent concept C and its child concepts C0 to Ct.

Fig. 6.4 depicts an example of RS(X(C1(C11, C12, C13), C2(C21, C22)),
Y(C3(C31, C32), C4(C41, C42)), where C2(C21, C22) means concept C2 is the
super-concept of C21 and C22. Point P contains resource r1 and r2 both of
which belong to the classification “X=C21, Y=C41”.

Fig. 6.3. System architecture.

Resource Operation Input Module is responsible for the input of re-

source operation from users. Five major kinds of resource operations are

6.3 System Architecture 139

considered here: insertion, deletion, modification, exact query and range
query. They are expressed by users who only know RSM schema but not
the underlying storage format. In this sense, the resource query “X=C1,
Y=C2” is equivalent to the query “Y=C2, X=C1”.

Fig. 6.4. A point and its resources in a resource space.

RSM Schema Tree Module encodes the input RSM schema into bit
strings which preserve all hierarchy semantics between concepts. In this
way, a one-to--one mapping is set up between RSM concepts and bit
strings, and stored in a single disk file. If the file is small, load it into inter-
nal memory before doing resource operations. Otherwise, build up an in-
dex in the head of the file which will be loaded into internal memory in-
stead of the whole file. The index should well support the search for bit
string given concept as well as the search for concept given bit string. RSM
Schema Tree Module also sends related RSM schema information to
Physical Storage Space Module to help the initialization of the underlying
indexing structure C-tree. It transforms the resource operations input from
Resource Operation Input Module into the format of the underlying stor-
age.

Physical Storage Space Module is responsible for the creation and main-
tenance of C-tree. C-tree is stored in a single disk file. Each node corre-
sponds to a page in the file. In default, the first page stores the root node of
C-tree. Leaf node keeps a certain number of classification points in RSM
space. Each classification point corresponds to another page which keeps
resource locations like file path and URI (Uniform Resource Identifier). C-
tree extends R-tree to index the underlying multidimensional bit string

140 Chapter 6 Resource Space Model Storage

space where there is no linear order but hierarchy relationships between
coordinates.

6.4 RSM Storage Mechanism

To achieve the semantic goal, we devise a RSM schema tree to encode all
hierarchy semantics of a given RSM in a single binary tree. It provides
three basic functions as follows:

1. void createStorageSpace(RS rs)⎯it accepts a RSM schema as input
and creates an underlying physical storage space, a multidimensional
bit string space.

2. BitString normalize(Concept c) ⎯it accepts a concept as input, and
returns its path in the schema tree as a bit string. RSM schema tree
plays the role of mapping RSM and resource operations at the logical
level into those at the physical level.

3. BitString normalize(Axis a) ⎯it accepts an axis as input, and returns
its path in the schema tree as a bit string.

To achieve the operation goal, we devise C-tree to index the underlying
multidimensional bit string space. It provides the following four basic
functions:

1. ResourceSet exactQuery(Classification c) ⎯ it finds out all the re-
sources belonging to the input conceptual classification. Each concep-
tual classification is a point in the multidimensional bit string space.

2. Boolean insert(Resource r) ⎯it inserts the given resource in C-tree.
The input resource contains its conceptual classification as well as lo-
cation.

3. Boolean delete(Resource r) ⎯it deletes the given resource from C-tree.
4. ResourceSet rangeQuery(ClassificationRange range) ⎯it returns all

the resources whose conceptual classifications are inside the given
conceptual classification range.

C-tree puts nearby classification points together in external memory so
as to achieve an amortized cost of O(logN + T) where N is the number of
resources and T is the number of retrieved resources.

6.5 RSM Schema Tree 141

6.5 RSM Schema Tree

Each axis of RSM corresponds to a concept tree as depicted in Fig.6.6. For
an RSM of dimensionality d, its schema consists of d concept trees. By
forest-to-tree transformation, we can construct a binary tree of the given
RSM. By labeling each left edge with bit 0 and each right edge with bit 1,
we encode all axes and concepts into bit strings by combining all the bits
in their root-to-node paths. Fig. 6.5 demonstrates the generation of an
RSM schema tree from the resource space in Fig. 6.4.

Theorem 6.1. Let s1 be the bit string of axis X and s2 be the bit string of
concept C. C is a concept in X if and only if s10 is the prefix of s2.

Proof. The proof consists of the following two parts:

(=>) In the construction process of RSM schema tree, if C is a concept in
X, C’s corresponding node in RSM schema tree is in the left subtree of X’s
corresponding node. Therefore, s10 is the prefix of s2.
(<=) If s10 is the prefix of s2, C’s corresponding node in RSM schema tree
is in the left subtree of X’s corresponding node. Hence C is a concept in X.


X

YC1

C2C11

C12

C13

C21

C22

C3

C4C31

C32 C41

C42

Fig. 6.5. RSM schema tree.

Theorem 6.2. Let s1 be the bit string of concept C1 and s2 be the bit
string of concept C2. C2 is a sibling concept of C1 if and only if s1=s2(1+) or
s2=s1(1+), where 1+ is a regular expression representing a sequence of one
or more 1.

142 Chapter 6 Resource Space Model Storage

Proof. The proof consists of the following two parts:

(=>) Since C2 is a sibling concept of C1, there are only sibling concepts be-
tween them. In terms of their bit strings, s1=s2(1+) or s2=s1(1+).
(<=) Without loss of generality, we just examine the case s1=s2(1+). Since
bit 1 represents one sibling concept is passed over and bit 0 represents one
time of concept refinement, C2 is a sibling concept of C1. 
Theorem 6.3. Let s1 be the bit string of concept C1 and s2 be the bit
string of concept C2. C2 is the parent concept of C1 if and only if s1 equals
s20(1*), where 1* is a regular expression representing a sequence of zero or
more 1.

Proof. The proof consists of the following two parts:

(=>) Suppose C2 is the parent of C1. If C1 is the first child (or 0th) of C2,
then s1 equals s20 which can be easily inferred from the construction proc-
ess of RSM schema tree. If C1 is the ith child of C2, then s1 equals s20(1+)
where the number of 1 is i. Therefore, s1 equals s20(1*).
(<=) From the construction process of RSM schema tree, we know 0 repre-
sents one time of concept refinement and 1 represents one sibling concept
is passed over. Therefore, if s1 equals s20(1*), only one time of concept re-
finement occurs. So C2 is the parent of C1. 
Theorem 6.4. Let s1 be the bit string of concept C1 and s2 be the bit
string of concept C2. C2 is the ancestor concept of C1 if and only if s20 is
the prefix of s1.

Proof. The proof consists of the following two parts:

(=>) If C2 is the parent concept of C1, then s1 equals s20 or s20(1+) by
Theorem 6.2. Therefore, s20 is the prefix of s1 in this case. Otherwise, one
child C3 of C2 is the ancestor concept of C1. Let s3 be the bit string of C3.
From the construction process of RSM schema tree, we know that s20 is
the prefix of s3 and that s3 is the prefix of s1. Therefore, s20 is the prefix of
s1.
(<=) If s20 is the prefix of s1, C1 must be at least one time of concept re-
finement of C2. Hence C2 is the ancestor concept of C1. 

Since the shortest path between two concepts in the concept tree reflects
the distance between the two concepts and their common ancestor, we de-
fine the semantic distance as follows.

Definition 6.1. Semantic distance dist(C1, C2) between two concepts C1
and C2 in the same axis X is the length of the shortest path between them in
the multi-way concept tree of X.

6.5 RSM Schema Tree 143

Fig. 6.6 depicts the multi-way concept tree of axis X(C1(C11, C12, C13),
C2(C21, C22)). dist(·, ·) defines the semantic closeness between concepts in
the same tree. For example, dist(C12, C21) is 4 since the shortest path from
C12 to C21 is C12→ C1→ X→ C2→ C21.

Fig. 6.6. Concept tree of axis X.

Theorem 6.5. dist(·, ·) is a metric function.

Proof. For any three concepts C1, C2, C3 in axis X, dist(·, ·) satisfies the
following properties:

1. dist(C1, C2)≥ 0, since the path length is always a non-negative inte-
ger.

2. dist(C1, C2) = 0 if and only if C1 = C2, since the length of the shortest
path is 0 if and only if two concepts actually are the same.

3. dist(C1, C2) = dist(C2, C1), since the path between two concepts has no
direction.

4. dist(C1, C2) + dist(C2, C3)≥ dist(C1, C3). Given C1 and C3, C1→ C2→
C3 is a path from C1 to C3. It must be no shorter than the shortest path
from C1 to C3. Therefore, dist(·, ·) satisfies the triangle inequality. 

There are two most commonly used bit string operators, notated as fol-
lows.

1. lcp(s0, s1,..., sk-1) is the longest common prefix of the input bit strings s0,
s1,..., and sk-1.

2. s.cutTail(s’) represents cutting the bit string s’ from the tail of bit string
s. s’ can also be in format of a regular expression.

144 Chapter 6 Resource Space Model Storage

Theorem 6.6. Let C be the nearest common ancestor of concepts C0, C1,
C2, ..., and Ck-1. s is the bit string of C. si is the bit string of Ci. Then s=
lcp(s0, s1,..., sk-1).cutTail(01*) holds.

Proof. We first confine k to be 2. Without loss of generality, we consider
the case in Fig. 6.7. C is the nearest common ancestor of C0 and C1. C0
precedes C1 in the preorder traverse of RSM schema tree. C’ is the child of
C and the ancestor of C0. Let s’ be the bit string of C’. Therefore, s’ is the
longest common prefix of s0 and s1, and s’= s0(1*). So s=s’.cutTail(01*)
holds, where 01* is a regular expression representing zero or more 1. So
s=lcp(s0, s1).cutTail(01*) holds.

In case of k > 2, let C’ be the child of C and the ancestor of the concept
Ci. Ci is the first concept among C0, C1, C2, ..., and Ck-1 in the pre-order
traverse of the RSM schema tree. By the same reasoning, we can conclude
s=lcp(s0, s1,..., sk-1).cutTail(01*). 

Fig.6.7. C is the nearest common ancestor of C0 and C1. C’ is the child of
C as well as the ancestor of C0.

Theorem 6.7. Suppose concept C1 and C2 are in the same axis X. s1 is the
bit string of C1. s2 is the bit string of C2. C is their nearest common ances-
tor in the concept tree of X. s is the bit string of C. Then dist(C1, C2) = ze-
roCount(s1’) + zeroCount(s2’), where s=lcp(s1, s2), s1=ss1’, s2=ss2’, and ze-
roCount(str) is the number of 0 in the bit string str.

Proof. Since bit 0 represents one time of concept refinement, the number
of 0 in s1’ is equal to the shortest path between C1 and C, and the number

6.5 RSM Schema Tree 145

of 0 in s2’ is equal to the shortest path between C2 and C. Since the shortest
path from C1 to C2 is the concatenation of the shortest path from C1 to C
and the shortest path from C to C2, dist(C1, C2) = zeroCount(s1’) + zero-
Count(s2’). 

By Theorem 6.7, we can calculate the semantic distance between any
two concepts given their bit strings. Theorem 6.5 shows that the semantic
distance function is a metric function.

According to Theorem 6.1 to 6.4, all hierarchy semantics can be deter-
mined just according to concepts’ bit strings, which include ancestor-
descendant relationship, parent-child relationship, sibling relationship, and
concept-in-axis relationship. Therefore, it is enough to only store the bit
strings of axes and concepts rather than the schema tree. File file_schema
depicted in Fig. 6.8 is on this purpose.

Using RSM schema tree, all hierarchy semantics between concepts are
encoded into bit strings. By certain rules of computation on given con-
cepts’ bit strings, their semantics can be exposed. The RSM schema tree
plays the role of interface between the above logical resource space and
the underlying physical storage space which is a multidimensional bit
string space.

Fig.6.8. The One-One mapping between concepts and bit strings is stored
in File file_schema.

One remaining problem in RSM schema tree is that a bit string may be
extremely long even up to a linear order of the number of axis concepts. It

146 Chapter 6 Resource Space Model Storage

is mainly caused by the magnitude of the number of sibling nodes. As
known to us, the number of concept refinements is rather small in applica-
tions, say, less than 32 levels, which is confined by people’s recognition
ability. Hence the depth of concept hierarchy tree is limited in applications.
However, the number of a concept’s children can be quite large. For ex-
ample, there are 193 countries in the world. In RSM schema tree, it re-
quires 192 consecutive “1” bits appended to the bit string of concept world
to represent the last country.

We propose a compressed encoding method to set an upper bound for
the length of concepts’ bit strings. It works as follows. Given a bit string,
retrieve the first 7 bits. If it contains at least one 0, pack it with a byte by
setting the first bit as 1. Otherwise, read more bits until 0 appears or the
number of 1 bit adds up to 120. In either case, pack the number of counted
1 bits with a byte by setting the first bit as 0. Proceed with the above proc-
ess until the residual bit number is no more than seven. Some packing bits
are necessary when the residual bit number is less than seven.

Algorithm compressCode(s) // in Java language
 ByteList bl = ∅; // byte sequence
 byte count = -1;
 while(s.length > 7)
 if(count == -1)
 byte tmp = cut 7 bits from s head;
 if(tmp == (01111111)2)
 count = 7;
 else
 tmp = tmp.setFirstBit(1)
 bl.append(tmp);
 else
 cut all successive 1 at most 120

from the head of s;
 count += the number of 1 cut off;

 bl.append(count);
 count = -1;
 count = s.length;
 bl.append(pack(s)); // pack s with all 0 at the end
 bl.append(count);

6.5 RSM Schema Tree 147

Take the bit string 1101011－1111111－1111111－1110111－0101 in
format of 7-bit segments as an example. The first 7-bit segment is packed
in byte 11101011. Since the next 7-bit segment comprises seven 1, more
bits are consumed until 0 appears. The counted number of 1 bit is 17
whose binary value is 00010001 which is treated as the second packing
byte. The next 7-bit segment is 0111010. It is packed in byte 10111010.
Now the residual bits are a single 1. We append successive 000000 to align
its length with seven. Then we set the first bit of its packing byte as 1. So
we get the third packing byte 11000000. At last, we append one more byte
which records the length of the residual bits at the previous step. Its first
bit is set as 0. Therefore, the final byte sequence is 11101011－00010001

－10111010－11000000－00000001. More 1 bits does the original bit
string have, more efficiency is our compressed encoding approach. Algo-
rithm compressCode describes the above approach in detail.

The following theorem gives an estimation of the byte number after
compression.

Theorem 6.8. Assume the depth of concept hierarchy is at most D and
the maximal number of any concept’s children is at most 127c, where c is
a constant. Then, the number of bytes after compression is at most D(1+c).

Proof. One time of concept refinement incurs one 0 bit, so one byte needs
to preserve this information during bit string compression. Since the
maximal number of child of any concept is 127c at most, c bytes are
enough to represent all 1 bits incurred by sibling concepts of the same par-
ent concept. Therefore, 1+c bytes are enough to go down one level in the
axis’s concept tree. Because the concept hierarchy depth is D at most, the
byte number after compression is D(1+c) at most. 

It is easy to decode a compressed bit string to the original. Each time
decode one byte. Examine the first bit of the byte. If it is 1, the left seven
bits belongs to the original bit string. If it is 0, recover a number of 1 bits
which is equal to the value of the byte. The above process is carried out
until only two bytes are left. The value of the second one is the number of
packing bits in the first byte. So it is also convenient to recover the original
information. In fact, we do not need to fully recover all the information
since most of the time we just compare or do partial calculation upon their
bit strings.

148 Chapter 6 Resource Space Model Storage

6.6 C-tree

Utilizing RSM schema tree, resource space is converted to multidimen-
sional bit string space where each coordinate is a bit string. Hierarchy se-
mantics exist between bit string coordinates, but there is no total ordering
between them.

Current multidimensional access methods can do little in this setting.
From their perspective, the underlying storage device is abstracted as a lin-
ear array, which supports fast sequential access but time-consuming ran-
dom access. In contrast, there is no total ordering among points in a multi-
dimensional space. Accordingly, current multidimensional access methods
concentrate on devising efficient ways of putting nearby points into adjoin-
ing pages.

In multidimensional bit string space, the proximity of points is more
complex than conventional multidimensional space. The shortcoming is
that bit string coordinates do not have a linear ordering. Fortunately, they
have a metric semantic distance as defined in Definition 6.1. Therefore,
semantic distance between concepts (bit strings) can help construct more
effective and efficient indexing structures.

We propose C-tree to get this work done, where C means Concept and
Classification. It inherits the basic ideas of classic R-tree and its variants
(Guttman, 1984). Moreover, the hierarchy semantics encoded in bit strings
is extremely useful for resource insertion and query. It has not only spatial-
close but also semantic-close resources stored in adjoining storage space.

6.6.1 Resource Operations

R-tree can be seen as the multidimensional version of B-tree. Points
nearby in the space are grouped together in the same leaf node. Hence each
leaf node corresponds to a Minimum Bounding Rectangle (MBR) of the
points inside it. Leaf nodes with nearby MBRs are grouped together again
to form the next upper level. This procedure continues until only one node
is remaining which is made as the root node. Fig. 6.9 depicts an example
of R-tree.

6.6 C-tree 149

Fig. 6.9. An example of R-tree.

Nowadays, R-tree has already become a design rationale of spatial index
structures, far more than just a specific indexing tree. It has three basic
components: MBR format, INSERT_POLICY, and SPLIT_POLICY.
MBR format is usually a hyper-rectangle or hyper-sphere in conventional
multidimensional access methods. It should have certain transitivity prop-
erty, say, spatial containment relationship. The two policies follow the
good standards like the minimization of blank space, overlap area and area
margin. Usually, distinct definitions of these four components lead to dif-
ferent spatial index trees, such as R+-tree, R*-tree, etc.

Procedures for resource operations are generally as follows.

// find point p inside node n.
Algorithm exactQuery(p, n)
 if(n is leaf)
 foreach(point c inside n)
 if(p = = c)
 output c;
 else
 foreach(branch ni of n)
 if(p is inside ni’s MBR)
 exactQuery (p, ni);

150 Chapter 6 Resource Space Model Storage

// delete point p
Algorithm delete(p)

// n is the leaf node containing point p
 node n = find(p, ROOT);
 if(n not exist)
 return;
 delete p from n;
 if(n underflows)
 condense(n);
 else if(n needs adjust)

 adjust(n);

// insert point p
Algorithm insert(p)
 node n = root;
 while(n is non-leaf)
 ni is the best branch of n by

INSERT_POLICY;
 n = ni;
 add p into n;
 if(n overflows)
 split(n);
 else if(n needs adjust)

// find points inside given range and node n.
Algorithm rangeQuery(range, n)
 if(n is leaf)
 foreach(point c inside n)
 if(c is inside range)
 output c;
 else
 foreach(branch ni of n)
 if(range intersects with ni’s MBR)
 rangeQuery(range, ni);

6.6 C-tree 151

// node n need to split as a result of overflow
Algorithm split(n)
 do
 split n to new nodes p and q by

SPLIT_POLICY;
 if(n is root)
 generate a new ROOT with

entry p and q;
 return;
 node n’ = the parent of n;
 remove entry n from n’ and

add p and q into n’;
 n = n’;

// node n need to adjust its MBR as a result
// of child change
Algorithm adjust(n)
 do
 if(n is root)
 adjust ROOT;
 return;
 node n’ = n.pp; // n’ is the parent of n.
 adjust entry n in n’;
 n = n’;
 while(n needs adjust);

152 Chapter 6 Resource Space Model Storage

6.6.2 Minimum Bounding Rectangle

In multidimensional bit string space, MBR is not easy to perceive and
visualize. The impediment lies on no linear ordering between bit string co-
ordinates. So no two coordinates can be found enough to set the range of
several given coordinates. If we simply list them all, too many coordinates
must be stored in the upper-level nodes of the index tree. It seems inevita-

// reinsert n at its original level
Algorithm reinsert(n)
 node n’ = root;
 // n.lev is the level of node n.

// Leaf node’s level is 0.
 while(n’.lev > n.lev + 1)
 ni is the best branch of n’ by

INSERT_POLICY;
 n’ = ni;
 add n into n’;

if(n’ overflows)

// node n need to condense as a result of underflow
Algorithm condense(n)
 Queue Q = ∅; // FIFO queue
 while(n is not root && n underflows)
 // add into queue’s tail
 Q.addTail(all the entries of n);
 node n’ = the parent of n;
 remove entry n from n’;
 n = n’;
 adjust(n);
 // get head node in Q and reinsert it
 while(n = Q.getHead())

 reinsert(n);

6.6 C-tree 153

ble to predefine an order between concepts. However, such an order should
preserve hierarchy semantics between concepts as much as possible.
Meanwhile, resource operations should follow the hierarchy semantics.

In our implementation, we define the order as the pre-order traverse of
RSM schema tree. Fig. 6.10 depicts an example. [Cs,Ce] is the range of the
concepts in shape of dark nodes. [Cs,Ce] covers all dark nodes and shadow
nodes. Therefore, an MBR is in format of ([s0,e0], [s1,e1], ..., [sn-1,en-1])
where si is the bit string of Cis, ei is the bit string of Cie, [Cis, Cie] is the con-
cept range on the ith dimension, and n is the dimensionality of the multi-
dimensional bit string space.

Fig. 6.10. Concept range [s, e] in the concept tree.

Theorem 6.9. The containment relationship between C-tree’s MBRs sat-
isfies the transitivity property.

Proof. MBR’s projection in each dimension satisfies containment transi-
tivity property, so MBR satisfies containment transitivity property. 

Definition 6.2. Bit string s is the proper prefix of s’ if and only if s is the
prefix of s’ but not equal to s’.

Theorem 6.10. Let s be the bit string of concept Cs, e be the bit string of
concept Ce, and t be the bit string of concept C. C is in range of [Cs, Ce] in
the concept tree if and only if s ≤ α t ≤ α e where≤ α is the alphabetical or-
der between bit strings assuming 0 is in front of 1 in the alphabetic.

154 Chapter 6 Resource Space Model Storage

Proof. Since the preorder traverse of concept tree is the same as the pre-
order traverse of transformed binary tree, C is in range of [Cs, Ce] if and
only if t is in range of [s, e], that is, s ≤ α t ≤ α e.

MBR may need update after point insertion. Assume the point is p(p0,
p1,..., pn-1) and the MBR is mbr([s0, e0], [s1, e1],..., [sn-1, e n-1]). If pi is con-
tained by the range of [si, ei], [si, ei] remains no change. If pi precedes si,
then [si, ei] is changed to [pi, ei]. If ei precedes pi, then [si, ei] is changed to
[si, pi].

One characteristic of multidimensional bit string space is that coordi-
nates can be inserted or deleted. It is useful in real applications, since con-
cept hierarchy semantics evolutes with time. New concept refinement
represents a deeper understanding of the application’s semantics.

6.6.3 On INSERT_POLICY

Insert policy decides which MBR among several sibling MBRs is the best
to incorporate the given point. In conventional multidimensional space,
good means least area enlargement, least overlap area enlargement, least
perimeter, etc. The basic idea is making MBR more compact so that blank
space is as small as possible. In this way, less space needs accessed in the
query process.

In multidimensional bit string space, however, such three good meas-
urements are hard to compute since we do not know exactly how many co-
ordinates are inside a given concept range. What we are able to know is the
following two:

1. whether the containment relationship satisfies between concept and
concept range, and

2. the semantic distance between concept and the start/end concepts of
the concept range.

We will show how to define the semantic distance between a concept
and a concept range, which contributes to more compact MBRs as well as
better grouping according to semantic clustering.

Definition 6.3. Given a point p(p0, p1,..., pn-1) and an MBR mbr([s0, e0],
[s1, e1],..., [sn-1, en-1]), the semantic distance between p and mbr is measured
by distPM(p, mbr) = Σi=0..n-1 min{dist(pi, si), dist(pi, ei)}.

6.6 C-tree 155

The smaller is distPM, the better is the insertion of p into mbr. Two
cases needs to be taken into account when deciding the best sibling MBR
to insert point p into.

When p is inside one or more MBRs, resolve tie by selecting the MBR
which has the smallest semantic distance to p according to Definition 6.3.
This aims at promoting the compactness of MBR.

When p is outside each MBR, three measurements are considered in de-
creasing priority.

1. least overlap. Let overlapNum(mbr, i) be the number of sibling
MBRs whose projections on ith dimension intersect with MBR mbr’s
projection on ith dimension. Let mbr’ be the MBR after inserting
point p into mbr. Then overlapNum(mbr’, i)-overlapNum(mbr, i)
measures the increased projection overlap number on ith dimension
for inserting point p into mbr. least overlap is the MBR with the
smallest Σi=0..n-1 (overlapNum(mbr’, i)-overlapNum(mbr, i)).

2. least semantic distance. Select the MBR which has the smallest se-
mantic distance to p as defined in Definition 6.3.

3. least perimeter enlargement. Suppose mbr’ ([s0’, e0’], [s1’, e1’],..., [sn-

1’, en-1’]) is the resulting MBR of inserting point p(p0, p1,..., pn-1) into
MBR mbr ([s0, e0], [s1, e1],..., [sn-1, en-1]). The perimeter enlargement is
Σi=0..n-1 ([si’, ei’]−[si, ei]), where [si’, ei’] − [si, ei] is equal to dist (si’,
si)+dist (ei’, ei).

6.6.4 On SPLIT_POLICY

When a node in the tree index overflows, it needs split since the allocated
storage space for it is limited. The goodness standards for node split are
much the same as that of insert policy. Blank space should be minimized
to improve query efficiency. The difficulty of achieving this goal in C-tree
is the same as that of insertion.

Our approach consists of two steps. At the first step, pick up two chil-
dren of current node as seeds. They should be the farthest pair of child
nodes. Suppose mbr1=([s10, e10], [s11, e11],..., [s1 n-1, e1 n-1]) and mbr2=([s20,
e20], [s21, e21],..., [s2 n-1, e2 n-1]). Their pre-order distance distPre(mbr1,
mbr2) is defined to be Σi=0..n-1 f([s1i, e1i], [s2i, e2i]) where

f([s1i, e1i], [s2i, e2i])

156 Chapter 6 Resource Space Model Storage

⎩
⎨
⎧ ∈∨∈

=
otherwise)},(),,({min

] ,[] ,[0

1i2i2i1i

2i2i1i1i1i2i

esdistesdist
essess

.

distPre(mbr1, mbr2) computes the distance in the pre-order traverse of
RSM shema tree. It measures the farness of a pair of child nodes by the
sum of the semantic distances of their projections on each dimension. It
measures an overall semantic closeness from the perspective of multidi-
mensional classification.

The second step is assigning each left child nodes of current node to the
nearer one of the two seeds. For example, mbr’ will be assigned to mbr1 if
distPre(mbr1, mbr’) is smaller than distPre(mbr2, mbr’). This process will
group together similar classification zones in the space.

6.6.5 Disk management

Fig. 6.11 depicts an example of C-tree. Three classification points p1, p2
and p3 are grouped together in node A. The other two are grouped in node
B. A and B are the children of the root node.

C1 C2

C11 C12 C13 C21 C22

X

Y

C
3

C
4

C
31

C
32

C
41

C
42

p3

p1

p2

Fig. 6.11. An example of C-tree. Three points p1(C12,C31) {fp1, fp2, fp3},
p2(C11,C3){fp6} and p3(C13,C32){fp4, fp5} are grouped together in rectangle
A.

6.7 Summary 157

 Fig. 6.12 describes the corresponding external memory storage using a
single file file_ctree. It is divided into pages each of which corresponds to
a certain size of consecutive storage space. The size of the page would bet-
ter match disk’s block size to enable efficient page read and write. The
first page is allocated for root node of C-tree in default. Each of the other
tree nodes is also stored in one page which is randomly allocated. The
pointer to the child node in C-tree is transformed to page shift of the child
node’s page in file_ctree. Each point inside a leaf node represents some
kind of conceptual classification. It is accompanied by the shift number of
the page storing its resources, for example, a list of file paths if the re-
sources are local files, or URI (Uniform Resource Identifier) in the net-
work setting.

file_ctree

(mbrA,shiftA)0

shiftA

shiftB

 (mbrB,shiftB)

page no.

(mbrp,shiftp) (mbrq,shiftq)

fp1shiftp

shiftq

shiftr

fp2 fp3

fp6

fp4 fp5

Fig. 6.12. file_ctree stores C-tree in external memory.

6.7 Summary

The Resource Space Model uses hierarchical classification semantics to re-
flect semantics in the real world, document world, machine world and

158 Chapter 6 Resource Space Model Storage

mental world. Relational tables are not effective in supporting hierarchical
classification semantics. XML files bring into resource redundancy. More-
over, their performance in multi-attribute search is not good. Multidimen-
sional access methods depend on linear order between coordinates of axis,
while there is no linear order on coordinates in Resource Space Model.

The proposed RSM storage mechanism transforms a resource space into
a multidimensional bit string space by encoding coordinates into bit
strings, and then uses C-tree to index the multidimensional bit string space.
Hierarchy semantics is embodied in the bit strings and used by C-tree in
resource insertion and deletion to group semantic-close resources in disk.
C-tree is not only a novel multidimensional indexing structure but also a
semantic-based resource re-organization mechanism for efficient search.

Chapter 7 Structured Peer-to-Peer Resource
Space

The Resource Space Model represents normalization while Peer-to-Peer
systems represent autonomy. Integrating resource space with the struc-
tured Peer-to-Peer network can construct a structured Peer-to-Peer re-
source space to realize the synergy between normalization and autonomy.

7.1 Basic Idea

7.1.1 The Problem

Peer-to-Peer (P2P) networks can be largely classified into two types: un-
structured and structured.

In unstructured P2P networks like Freenet (Clarke et al., 2000), Gnutella
(http://www.gnutella.com) and Napster (http://www.napster.com), each
peer manages its own data, and there is no particular assumption about the
assignment of data onto peers.

In structured P2P networks, data items (or indexes of data items) are as-
signed onto peers according to some rules. One popular type of structured
P2P networks is the Distributed Hash Table (DHT) based networks like
CAN (Ratnasamy et al., 2001), Pastry (Rowstron and Druschel, 2001),
Chord (Stoica et al., 2001) and Tapestry (Zhao et al., 2001). They mainly
aim at finding efficient ways to locate resources.

The Resource Space Model uses normalized classification semantics to
uniformly specify and manage various resources. Integrating the resource
space with P2P networks offers a chance for P2P networks to manage
complex resources by content.

It is also a chance for the Resource Space Model to support decentral-
ized applications by cooperating with P2P networks. Previous works on

160 Chapter 7 Structured Peer-to-Peer Resource Space

Resource Space Model mainly focused on the model itself and the central-
ized storage mechanism. If we want to use the Resource Space Model to
manage a Web community or an office network, the following issues are
critical:

1. How to implement the Resource Space Model in a decentralized envi-
ronment?

2. How to find a decentralized data structure to represent the Resource
Space Model and appropriate algorithms to efficiently implement its
operations?

This chapter presents an approach to construct a resource space overlay
to form a structured P2P Resource Space Model. The basic idea is similar
to the space partition idea of CAN (Ratnasamy et al. 2001).

7.1.2 A Brief Introduction to CAN

Like other DHT-based P2P networks, CAN provides applications with an
interface that maps key of a resource into the peer storing this resource. It
organizes an n-dimensional Cartesian space. This Cartesian space is parti-
tioned into zones, with one or more peers serving as owner(s) of the zone.
An example of 2-dimensional CAN is shown in Fig. 7.1. Each key in the
system is mapped into a point in the space using the distributed hash table.
The peer that owns the zone containing the point owns the corresponding
key, and is responsible for returning the resources it holds.

0.0

0.0

1.0

1.0

A
(0.0-0.5, 0.0-0.5)

C
(0.0-0.5, 0.5-1.0)

B
(0.5-1.0, 0.0-0.5)

D

(0.5-0.75, 0.5-1.0)

E

(0.75-1.0, 0.5-1.0)

Fig. 7.1. A 2-dimensional Cartesian space of CAN with 5 peers.

7.1 Basic Idea 161

The issue of routing from a source peer to a destination peer in CAN
turns into the issue of routing from one zone to another in the Cartesian
space. This routing will follow the path through the Cartesian space from
the source point to the destination point.

A peer joins the CAN by picking a random point in the Cartesian space,
routing to the zone that contains the point, splitting the zone into two, and
occupying one by itself. A peer departs from the CAN by asking one of its
neighbors to take over its zone.

7.1.3 Basic Approach

The following is the basic approach to deploy a resource space on struc-
tured P2P networks (structured P2P RSM).

It divides the topological space of the resource space into many inde-
pendent zones. Each node in the P2P network takes charge of one zone.
Each node maintains the information of its neighbor nodes for routing.
The approach naturally reserves the topological space view of the re-
source space and supports the basic operations of the Resource Space
Model.

The following are challenges of partitioning the resource space:

1. The resource space is not a Cartesian Space like CAN’s partition
space. It is a discrete classification space. Moreover, its coordinates
could be in tree structure. Therefore, the partition of resource space
needs some preprocessings and constraints.

2. There is no guarantee that the indices (i.e. the coordinates of re-
sources) of resources are evenly distributed in the resource space,
since resources are likely to center around the hot points (a point in
resource space represents a topic). Load balancing becomes a major
issue of the system.

162 Chapter 7 Structured Peer-to-Peer Resource Space

7.2 The System Design

7.2.1 The Basis

The resource space is a special n-dimensional topological space. For effi-
cient routing, our approach assumes that the coordinates at every axis are
ordered. The order specified by the designer takes the highest priority. If
the designer does not specify the order, the coordinates are ordered accord-
ing to some simple semantics such as the lexicographical order, numerical
order, and time order. This is reasonable once the resource space has been
designed and used to stably support applications. After ordering, the dis-
tance between two coordinates is defined as the number of coordinates be-
tween them.

The structured P2P RSM only concerns resource locating operation ⎯
the most basic operation of the Resource Space Model. All the nodes share
the same resource space schema in the structured P2P RSM. The entire re-
source space is dynamically partitioned among all the nodes in the system
such that every node owns its individual and distinct zone in the overall re-
source space. Each zone owns a continuous range of coordinates along
each dimension.

Fig. 7.2 shows a 2-dimensional resource space partitioned by 6 nodes.

7.2 The System Design 163

A Z
0.0

1.0
Node 1

Node 3

Node 2

Node 4 Node 5 Node 6

Fig. 7.2. Example of 2-dimensional space with 6 nodes.

The resources in resource space are stored as follows:

Each resource in the resource space can be represented by a point
whose coordinate will be taken as the index of this resource. Then, the
(key, value) pair is stored at the node that owns the zone within which the
corresponding point lies. Here, key is the coordinate values of the point in
the resource space, and value is either the resource itself or the pointer to
the resource, like IP address of the node possessing this resource.

To retrieve a resource, the requesting node must route the query mes-
sage in the structured P2P RSM overlay to the target node storing the re-
source. Effective routing is therefore a crucial aspect of the design of the
structured P2P RSM.

Nodes in the structured P2P RSM self-organize into an overlay that
represents the resource space. No super node is needed in this overlay.
Each node maintains a small piece of information such as IP addresses of
its neighbors and coordinate information of the corresponding zones. This
information will serve as the routing table that enables routing between
two arbitrary nodes in the structured P2P RSM overlay.

7.2.2 Node State

Each node maintains a routing table that holds the IP addresses and the vir-
tual coordinate zones of its neighbors in the resource space. In an n-

164 Chapter 7 Structured Peer-to-Peer Resource Space

dimensional resource space, two nodes are neighbors if their coordinate
zones overlap at n−1 dimensions and adjoin at one dimension. In Fig. 7.2,
node 3 is a neighbor of node 1 because its coordinate zone overlaps with
the node 1’s at the X-axis and adjoins at the Y-axis. Node 6 is not a
neighbor of node 1 because their coordinate zones do not adjoin at both the
X and Y axes.

The zone of each node is an n-dimensional rectangle and can be de-
noted by R.

R = (R0, R1, …, Rn-1) (7.1)

Here, n is the number of dimensions and Rk is a closed interval [a, b] de-
scribing the scope of the zone along dimension k.

The size of the routing table is very small, i.e. O(n) for a n-dimensional
resource space. No special effort is needed to well design the structure of
the routing table. The speed of searching the routing table is fast.

7.2.3 Routing

The local neighbor states are sufficient to route between two arbitrary
points in the space. All structured P2P RSM messages include destination
coordinates. The node uses a greedy method to forward the message to the
destination.

The routing procedure is executed whenever a message destined for co-
ordinate D is arrived at a node P. It is shown in pseudo code as follows.

Notations:

1. Z: the zone occupied by P.
2. Ni: one neighbor of node P, suppose P has m neighbors, 0≤ i<m.
3. Ri: the zone occupied by neighbor Ni.
4. k

iR : the closed interval describing the scope of the zone Ri along di-
mension k.

5. D=(D0, D1,…, Dn): Dk is the value describing the coordinate position
of D along dimension k.

6. Dist(D, R): the distance between coordinate D and zone R.

The routing procedure:

(1) if (D in Z){
(2) // D is within the range of zone Z

7.2 The System Design 165

(3) P is the targeting node;
(4) } else {
(5) forward to Nj, satisfying Dist(D, Rj) = Min0≤ i<m(Dist(D, Ri));
(6) }

The Dist function can be defined in many ways according to the applica-
tions. A good definition could highly reduce the number of routing hops,
while a poor definition may make the routing procedure run into an end-
less loop. The poor definition is not obvious, for example, one may define
Dist(D, R) as the point distance between D and the centroid of R. This is
meaningful in geometry and likely applicable. But actually it causes end-
less loop with high probability, especially when D is close to an edge of its
targeting zone. Therefore, giving a guideline for the definition of Dist
function is helpful.

We have defined Rk as a closed interval [a, b] describing the scope of
the zone R at dimension k. So, before discussing the guidelines of Dist(D,
R), we firstly define the distance between a coordinate value and a coordi-
nate interval as follows:

⎪
⎩

⎪
⎨

⎧

<
≤≤

<
=

k

k

k

k

k

kk

Db
bDa

aD

if
if
if

bDDist

DaDist
RDDist

),(''
0

),(''
),('

(7.2)

The ''Dist here is the distance between two coordinates in an axis.
Then the guideline can be described as follows.

Guideline. Suppose Ri and Rj are zones of two neighbors which adjoin at a
certain dimension k. If 'Dist (Dk, k

iR) < 'Dist (Dk, k
jR), then the defini-

tion of Dist function should satisfy Dist(D, Ri) < Dist(D, Rj).

The guideline can ensure that the routing correctly terminates at the
targeting node.

It is intuitively correct since the routing procedure always steps close to
the target along a dimension if the guideline is satisfied. The following is
the detailed proof.

Proof. Suppose Ri and Rj are zones of two nodes, and the Dist definition
satisfies the guideline. We firstly have the following lemma:

166 Chapter 7 Structured Peer-to-Peer Resource Space

If],1[nk ∈∀ , 'Dist (Dk, k
iR) ≤ 'Dist (Dk, k

jR) and],1[nl ∈∃ ,

'Dist (Dl, l
iR) < 'Dist (Dl, l

jR), then Dist(D, Ri) < Dist(D, Rj) holds.

From the lemma, we can deduce that the zone of the target node has the
globally lowest Dist value with D. At the same time, any non-target node
has at least one neighbor whose Dist value is lower. This is straightforward
since there are neighbors at two sides of one node along each dimension.
So at each step, the routing process reaches a node with lower Dist value.
As the routing leads to a direction of lower Dist value, it will eventually
terminate at the valley bottom, i.e. the targeting node. 

The following gives one sample of the Dist definition:

),('...),('),('),(2112002 n
i

n
iii RDDistRDDistRDDistRDDist +++= (7.3)

1
2

3 4

5

6

7

89

D

Fig. 7.3. Sample routing path from node 1 to coordinate D.

Fig. 7.3 shows a sample routing path using equation 7.3 as the definition
of Dist. We can also see that there are many routing ways to the destina-
tion. A simple node failure in the routing path cannot detain the routing
process. The routing of the structured P2P RSM is robust to node failures.

For a n-dimensional resource space partitioned into m equal zones, the
average routing path length is (n/4)(m1/n) and each individual node main-

7.2 The System Design 167

tains 2n neighbors’ information. These scaling results mean that for a n-
dimensional space, we can increase the number of nodes (and hence zones)
without increasing per node state while the path length grows as O(m1/n).

7.2.4 Node Join

Here we discuss how the structured P2P RSM deals with node join which
allows the structured P2P RSM to grow incrementally. As described
above, the entire resource space is partitioned amongst the nodes currently
in the structured P2P RSM. Thus when a new node joins the system, one
new zone of the coordinate space must be allocated for it. Also, the new
node needs to initiates its node state, and then informs other nodes of its
presence.

The strategy for new zone allocation is that an existing node splits its
zone into two parts, retains one part and gives the other part to the new
node.

In order to join the structured P2P RSM system, the new node must
first find a node, called introducer, currently in the system and its IP ad-
dress. Many techniques can help to find the introducer. One example of
such techniques is introduced in (Eugene and Zhang, 2001). This tech-
nique assumes that the system has an associated DNS domain name, and
that this DNS name can resolve to the IP address of one or more bootstrap
nodes. A bootstrap node maintains a partial list of structured P2P RSM
nodes it believes are currently in the system. To join a structured P2P
RSM, a new node looks up the domain name in DNS to retrieve a boot-
strap node’s IP address. The bootstrap node then supplies the IP addresses
of several randomly chosen nodes currently in the system.

Then, the new node must select a coordinate D that is suitable for itself
so as to allow the system to allocate one zone for it. One method is that the
coordinate D is randomly selected in the resource space. The advantage of
this method is that the entire resource space can be divided evenly amongst
the nodes currently in the structured P2P RSM system. If the resource in-
dices are also distributed evenly in the resource space, then this method
can achieve the load balance simply and naturally. However, this assump-
tion is not tenable in the real resource space. And, the random selection
may lead to an imbalance in the distribution of resource indices across the
nodes.

To cope with this uneven distribution of resource indices, a content-
aware coordinate D selection method is proposed to force the distribution

168 Chapter 7 Structured Peer-to-Peer Resource Space

of nodes to follow the distribution of resources indices. When a node joins,
the coordinate D is selected as the center of the coordinates of resources
which will be published by the new node. Apparently, if D is selected in
this way, more nodes will be located in the area where more resource indi-
ces exist. Thus, a more balanced index distribution across nodes is
achieved. Moreover, this method makes the structured P2P RSM have the
locality property. As the nodes occupy the zones covering the indices of
their resources, some redirections from indices nodes to resource nodes are
saved. And, assuming the resources published by a node can reflect its in-
terests, most of the queries initiated by a node would be answered within a
small range of neighbors in the structured P2P RSM system.

Fig. 7.4 evaluates this load balancing technique by distributing 5×104
papers onto 1000 nodes using the structured P2P RSM. The X-axis gives
the number of indices per node, while the Y-axis gives the percentage of
nodes containing the cooresponding number of indices. The CAN series
evaluates the original CAN solution. It serves as the baseline for compari-
son. The structured P2P RSM-random series uses the random selection of
coordinate D. The structured P2P RSM-Content series uses the content-
aware coordinate D selection. Note that the load for structured P2P RSM-
random is poor as the number of indices per node varies largely across
nodes. Using content-aware coordinate D selection, most nodes contain
less than 70 indices, which is close to the average number 50. The load be-
comes more balanced as expected.

After the coordinate D is selected, the new node sends a join request
destined for the coordinate D. This message is sent into the structured P2P
RSM system via the introducer described above. Each structured P2P RSM
node then uses the structured P2P RSM routing mechanism to forward the
message until it reaches the node whose zone contains D. This current oc-
cupant node then splits its zone into two parts and assigns one part to the
new node. The resource indices located in the part to be handed over are
also transfered to the new node.

7.2 The System Design 169

0
0. 05
0. 1

0. 15
0. 2

0. 25
0. 3

0. 35

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Number of indices per node

Pr
ob

ab
ili

ty
 d

en
si

ty CAN
P2P- RSM- r andom
P2P- RSM- Cont ent

Fig. 7.4. The effect of content-aware coordinate D selection.

The splitting method can also be implemented in several strategies, like
splitting on the halves. But in order to enhance the balance in the distribu-
tion of resource indices across the nodes, we take the strategy that splits
the zone into two parts having the same number of resource indices. This
strategy enhances the load balance by evenly dividing the whole resource
space into zones possessing nearly the same number of resource indices.

Finally, the neighbors of the split zone must be notified so that routing
can include the new node. After obtaining its zone from the previous occu-
pant, the new node learns its neighbor set and the IP addresses of them,
since this set is obviously a subset of the previous occupant’s neighbors,
plus the occupant itself. The new node uses these information to initiate its
node state. And at the same time, the previous occupant updates its
neighbor set to eliminate those nodes that are no longer neighbors. Both
the new and old nodes’ neighbors must be informed of the node join and
reallocation of space, and update their node states to the current of the
times. Fig. 7.3 and Fig. 7.5 show an example of a new node (node 10) join-
ing a 2-dimensional structured P2P RSM.

The cost of node join is reasonably small. Only the neighbors in a very
small range of resource space are involved in the state update process.
And the number of neighbors of a node depends only on the dimensional-
ity of the coordinate space. Thus, node join affects only O(number of di-
mensions) existing nodes. This performance is important for structured
P2P RSM systems with huge number of nodes.

170 Chapter 7 Structured Peer-to-Peer Resource Space

Besides, in order to ensure that all node states are up-to-date and the in-
volved neighbors in node join quickly learn about the change and update
their own neighbor sets accordingly, every node in the system should peri-
odically send its currrent node state with its currently assigned zone to all
its neighbors. This heart-beat style refreshment is suitable for such distrib-
uted environments.

1
2

3 4

5

6

7

8
9

D

10

Fig. 7.5. Example of 2-dimensional structured P2P RSM after node 10
joins.

7.2.5 Node Departure

The idea for the normal node departure is quite simple. When a node
leaves the structured P2P RSM, it explicitly hands over its zone and the as-
sociated (key, value) list to one of its neighbors. The important thing is
how to select this neighbor. The structured P2P RSM has an implicit re-
striction on the zone that it must be an n-dimensional rectangle. Thus, if
the zone of one neighbor can be merged with the departing node’s zone to
produce a valid zone, then this is done. The selected neighbor takes over
the (key, value) list, and also gets the neighbor state of the departing node
to produce its own neighbor state. If such neighbors do not exist, for ex-
ample, the node 11 in Fig. 7.6 cannot produce any valid single zone with
its neighbors, the zone is handed to the neighbor who has the smallest
number of resource indices. However, this neighbor does not merge the

7.3 Improvement 171

two zones, but just temporarily handle both zones, much like this neighbor
acts as two virtual nodes. Afterwards, the two zones will be reoccupied by
two joining nodes along with node join or merged with other zones into a
valid single zone along with node departure. In both cases, the neighbors
must be informed of this reallocation of space. The previously mentioned
heart-beat style refreshment will be used here to ensure all node states are
up-to-date.

1
2

3 4

5

6

7

8
9

D

10

11

Fig. 7.6. Node 11 cannot produce any valid single zone with its neighbors.

7.3 Improvement

The basic structured P2P RSM algorithm described in the previous sec-
tions provides a fundamental knowledge about how the Resource Space
Model is used in a P2P network. This section improves the basic structured
P2P RSM model in the following two aspects:

(1) Improve the efficiency of the routing algorithm and the stability fac-
ing node failure.

(2) Extend the structured P2P RSM to support the important feature of
the Resource Space Model: coordinates in tree structure.

172 Chapter 7 Structured Peer-to-Peer Resource Space

7.3.1 Routing Performance

In the previously given routing algorithm, the neighbor selection for the
next hop is based on the distance defined in the resource space. This rout-
ing algorithm can be improved by considering the underlying network IP
topology. Each node measures the network level Round-Trip-Time (RTT)
to its neighbors. Then, for a given destination, the neighbor selection is
based on both the distance in resource space and RTT.

The following is the procedure of routing.

(1) if (D in Z){
(2) // D is within the range of zone Z
(3) P is the targeting node;
(4) } else{
(5) // considering RTT
(6) forward to Nj, satisfying Dist(D, Rj) < Dist(D, Z) AND Dist(D,
(7) Rj)+RTT(P, Nj) = Min0≤ i<m(Dist(D, Ri) +RTT(P, Ni));
(8) }

Besides considering the underlying network, the structured P2P RSM
routing performance can also be improved by adding augment information
to each node. The basic structured P2P RSM only stores neighbor informa-
tion, thus one step can only advance one zone in such a context. If we add
some long links from a distant span onto nodes, the routing performance
can be improved greatly. This improvement is illustrated in Fig. 7.7.

Using long links can dramatically reduce the total number of routing
hops, especially when the whole resource space is divided into many small
zones. In Fig. 7.7, we can see the routing path from zone 1 to D using long
link is shorter than the original one.

7.3 Improvement 173

1
2

3 4

5

6

7

89

D

Fig. 7.7. Example of long links (denoted by thick arcs).

The following are two methods to construct the long links:

1. Constructing long links while system growing (Xu and Zhang, 2002).
2. Constructing long links while routing.

The idea behind the constructing while growing algorithm is quite sim-
ple. At regular intervals of system growth, like the zone of one node
shrinks to a ratio threshold, snapshots are taken. A snapshot is simply a
“frozen” copy of a current routing table of one node. That means the copy
of the following things should be recorded at the node: the set of neighbor-
ing zones, and the set of corresponding addresses of the neighbors. This
frozen routing table will be used as long links in the future routing process.

The routing algorithm will firstly consider the snapshots in the current
node. If there are zones in snapshots containing the destination coordinate,
the routing process will take the smallest one and send the request message
to the corresponding node. Otherwise if no zone contains the destination
coordinate, the routing process fallbacks to the original routing strategy.

The process is as follows.

(1) if (D in Z){
(2) // D is within the range of zone Z
(3) //P is the targeting node;

174 Chapter 7 Structured Peer-to-Peer Resource Space

(4) } else {
(5) if (D in snapshots){
(6) forward to N, satisfying RN = Min(R : D within R);
(7) } else {
(8) // considering RTT
(9) forward to Nj, satisfying Dist(D, Rj) < Dist(D, Z) AND
(10) Dist(D, Rj)+RTT(P, Nj) = Min0≤ i<m(Dist(D, Ri) +RTT(P, Ni));
(11) }
(12) }

When using constructing while routing method, each node allocates a
buffer to store long links. The long link is detected while the node routes a
search request, and is added to the buffer. The buffer can simply take FIFO
replacement strategy. The routing algorithm selects the node of next hop
by considering both neighbors’ information and long link buffer.

The process is as follows.

(1) if (D in Z){
(2) // D is within the range of zone Z
(3) // P is the targeting node;
(4) } else {
(5) // long links, L represents the long link buffer
(6) Lk, satisfying Dist(D, Rk)< Dist(D, Z) AND Dist(D, Rk) + RTT(P,
(7) Lk) = Min0≤ i<buffersize(Dist(D, Li) + RTT(P, Li));
(8) // neighbors
(9) Nj, satisfying Dist(D, Rj) < Dist(D, Z) AND Dist(D, Rj) + RTT(P,
(10) Nj) = Min0≤ i<m(Dist(D, Ri) + RTT(P, Ni));
(11) if (Dist(D, Rk) + RTT(P, Lk)< Dist(D, Rj) + RTT(P, Nj))
(12) forward to Lk
(13) else
(14) forward to Nj

(15) }

7.3.2 Node Failure Recovery

A node in the structured P2P RSM may fail or depart without warning. We
need to ensure that the zones they occupied are taken over by the remain-
ing nodes such that the structured P2P RSM is robust to node failures. As

7.3 Improvement 175

mentioned, under normal conditions a node sends periodic update mes-
sages, which contains its zone coordinates and a list of its neighbors and
their zone coordinates, to each of its neighbors. Node failure can be de-
tected when an update message from a neighbor is prolonged. We have
explained that such an event of node failure does not detain the routing
process, since the routing message can be forwarded to another node.
However, the zone of the failed node should be taken over by an existing
node to preserve the integrity of the structured P2P RSM.

To complete the zone takeover, one of the failed node’s neighbors
should be selected to run an immediate takeover algorithm, which is simi-
lar to the takeover algorithm of normal node departure. However in this
case the resource indices held by the departing node would be lost until the
state is refreshed by the holders of the resources.

The selection of this neighbor is based on a timer-based protocol. Once
a node has detected that its neighbor has died, it initiates the takeover
mechanism and starts a takeover timer running. Each neighbor of the failed
node will do this independently, with the timer initialized in proportion to
the number of resource indices occupied by the node. When the timer ex-
pires, a node sends a takeover message with its own zone information to
all of the failed node’s neighbors. When receiving a takeover message, a
node cancels its own timer if the zone in the message is more suitable than
its own zone to produce a valid single zone, or it replies with its own take-
over message. In this way, a neighbor, which is still alive, is efficiently
chosen to complete the zone takeover.

7.3.3 Coordinates in Tree Structure

The resource space described above is a standard n-dimensional topologi-
cal space where each dimension has a flat coordinate space. However, a
resource space may have coordinates in tree structure. Here discusses the
implementation of these extensions for coordinates in tree structure. An
example of the coordinates in tree structure is shown in Fig. 7.8. Such co-
ordinates enable the resource space to represent rich semantics.

176 Chapter 7 Structured Peer-to-Peer Resource Space

a11

b

a23

a

a1

a2

a12

a21
a22

Fig. 7.8. Example of coordinates in tree structure.

When involving coordinates in tree structure, the design of the struc-
tured P2P RSM may face two main problems. The first is how to compute
the distance between coordinates in such a resource space. The second is
how to locate a coordinate in tree structure.

In order to use distance computing method in the flat coordinate view,
we map the coordinates in tree structure into a flat one. Each leaf in a tree
corresponds to a path from the root. And we use this path to name the leaf.
Then, we replace the coordinates in tree structure with the leaf path’s
names. An example of the flattened coordinates for Fig. 7.8 is shown in
Fig. 7.9. The path name is composed of names of passing nodes which are
separated with a slash.

From the figures, we can see that one coordinate a in the tree structure
should be represented by five coordinates in flat structure. Thus, to com-
pute the distance between a and any other coordinates becomes to compute
the distance between the span (a/a1/a11 – a/a2/a23) and these coordinates.
Essentially the original algorithm is designed to settle the single key search
problem, but the coordinate locating in the coordinate tree turns into a
range search. Thus, the original coordinate locating algorithm should be
adjusted to reflect this difference.

7.3 Improvement 177

a/a1/a11

b

a/a1/a12
a/a2/a21
a/a2/a22

a/a2/a23

Fig. 7.9. The coordinates after flattening.

As the coordinates in the resource space are discrete, one possible solu-
tion is to decompose a into a/a1/a11, a/a1/a12, a/a2/a21, a/a2/a22,
a/a2/a23, and set up searches for these five coordinates, and finally com-
pose the search result. But this solution may introduce a search request
flood, and produce unnecessary network overhead.

To eliminate the unnecessary search requests, we change the request for
a to request for its lower bound a/a1/a11, and on the node responsible for
a/a1/a11, we initiate a range search for (a/a1/a11, a/a2/a23) which will re-
turn the correct results.

The process for the range search is as follows.

// suppose P is the node responsible for lower bound of tree structured
// coordinates. This span search will be initiated on P.
(1) if (D in Z) {
(2) // D is within the range of zone Z
(3) P is the targeting node;
(4)
(5) // span search
(6) for each dimension i
(7) forward to N, if N and P adjoin along dimension i;
(8) }

178 Chapter 7 Structured Peer-to-Peer Resource Space

7.4 Summary

The idea of deploying the resource space onto P2P systems is to divide the
whole resource space into many small zones. Each node manages one
zone of the resource space.

The structured P2P RSM is efficient and stable in distributed environ-
ment. For a n-dimensional space partitioned into m equal zones, the aver-
age routing path length is (n/4)(m1/n) and individual nodes maintain 2n
neighbors’ information. These scaling results mean that, for a n-
dimensional space, the increase of the number of nodes (i.e., the increase
of the number of zones) does not lead to the increase of per node state,
while the path length grows with O(m1/n).

The routing performance is further improved by considering the under-
lying network IP topology and adding long links. Thus for time-sensitive
applications, they can gain lower time cost by sacrificing some spaces. A
timer-based failure recovery mechanism is proposed for stability. The im-
proved mechanism can also deal with the coordinate tree.

The structured P2P RSM provides a decentralized, efficient and stable
storage infrastructure for the Resource Space Model.

Chapter 8 Unstructured Peer-to-Peer Resource
Space

Integrating the classification semantics of the resource space with unstruc-
tured Peer-to-Peer networks can construct an unstructured Peer-to-Peer
resource space to realize the synergy between normalization and auton-
omy.

8.1 Unstructured Peer-to-Peer

Unstructured Peer-to-Peer networks allow resources to be randomly placed
in self-organized peers. Connections between peers are optionally estab-
lished. Any peer can join the network by an introducer. A peer can query
its neighbors, and each neighbor forwards the query to their neighbors. The
process stops when a predefined number of hops (Time-To-Live) is
reached. During this process, any peer with the answer to the query can
contact the query initiator directly and finish the file transmission. The to-
pology and protocol are simple and can sustain the extremely dynamic en-
vironment.

The success of the unstructured Peer-to-Peer networks depends on its
simplicity and usability. Such networks have low maintenance cost and are
robust against accidental failures.

Routing in unstructured Peer-to-Peer networks often adopts one of the
following three mechanisms: flooding, random walk and gossip.

In the flooding mechanism, each peer forwards the query to all of its
neighbors except the one it receives the query from. Gnutella (http://rfc-
gnutella.sourceforge.net) is a popular unstructured Peer-to-Peer application
adopting the flooding mechanism.

In the random walk mechanism, a walker randomly chooses its next hop
following certain probabilistic preference for each neighbor (Gkantsidis et
al., 2004). The random walk requires little index and state maintenance.

180 Chapter 8 Unstructured Peer-to-Peer Resource Space

This chapter focuses on the gossip mechanism.

Simulating the propagation of contagious diseases, gossip mechanisms
have attractive scalability, reliability and degradation properties in realiz-
ing information dissemination in large networks (Bailey, 1975). Every peer
that receives a message randomly selects a certain number of peers from
its neighbors to multicast the message. They scale well since the load of
peers grows logarithmically compared with the number of peers in the
network.

The inherent scalability of the gossip-based mechanisms makes them
suitable for disseminating information in large-scale networks. Mean-
while, they are resilient to changes in the underlying network topology and
participants’ failures (Briman et al., 1999; Demers et al., 1987; Eugster and
Guerraoui, 2002; Eugster et al., 2001; Iamnitchi et al., 2002; Lin and
Marzullo, 1999; Renesse et al., 2003).

Moreover, the gossip-based mechanisms are easy to implement and in-
expensive to run, and they impose constant loads on participants. The
throughput is stable over a relatively long period, and overheads are flat,
predictable, and can be balanced with information about network topology
(Vogels et al., 2003).

The performance of the gossip mechanisms can be improved by design-
ing appropriate mapping from the network to a semantic space (Zhuge and
Li, 2007a).

8.2 Incorporating Resource Space with Unstructured
Peer-to-Peer

8.2.1 Peer-to-Peer in e-Science

Peer-to-Peer systems are playing more and more important role in resource
sharing fields. Take scientific research for example, researchers are usu-
ally specialized in one area during a period of time and may concern other
relevant areas. When there exists a Peer-to-Peer e-science system support-
ing researchers in different areas to share resources, intuitively a researcher
will communicate with those sharing the same interests more frequently,
because he/she could get the satisfied answers with high probability and
save time by avoiding communication with irrelevant peers. But peers

8.2 Incorporating Resource Space with Unstructured Peer-to-Peer 181

should not be constraint to the community of their fields as they need to
communicate with peers in other fields, although not frequently. So classi-
fication of peers plays an important role in improving the performance of a
Peer-to-Peer system.

(a) A 3-dimensional resource space.

(b) A partition tree corresponding to Fig. 8.1 (a).

Fig. 8.1. Mapping a 3-dimensional resource space into a partition tree.

An n-dimensional resource space represents n kinds of partition on a
set of resources. A resource space can be mapped into a partition tree
(e.g., Fig. 8.1(a) can be mapped into Fig. 8.1(b)).

182 Chapter 8 Unstructured Peer-to-Peer Resource Space

The classification semantics of the partition tree can be used to im-
prove the performance of a Peer-to-Peer system because a peer could get
the satisfied answers with high probability by interacting more frequently
with the peers of the same community sharing common interests. Peers
also need to communicate with peers of other communities.

We can make each leaf correspond to the peers in the same category.
The communities in the leaves of the partition could change with peers’
joining and departing behaviors.

The ACM Computing Classification System (CCS) is a classification
hierarchy, which can help scientific activities such as submitting, review-
ing, publishing and searching papers. It is based on the following philoso-
phy:

1. The core of the CCS is a classification tree to present a hierarchical
structure of disciplines and research areas.

2. The classification tree is restricted to three levels to accurately reflect
the essential structure of the disciplines.

3. The uncoded fourth level of the classification tree, subject descriptors,
provides sufficient detail to cope with new developments in the field
(http://www.acm.org/class/1998/ccs98.html). Taking “Information sys-
tems → Database management → Languages → Query languages” for
example, the first three levels correspond to the classification hierarchy,
and “Query languages” is a subject descriptor.

The CCS is actually a 1-dimensional classification space. The Resource
Space Model supports multi-dimensional classification semantics. Such
classification knowledge can be used to improve the query efficiency if we
implement a Peer-to-Peer e-science system. Actually, ontology has been
used to improve structured Peer-to-Peer systems (Schlosser et al., 2002).

Incorporating resource space with gossip mechanisms is a way to im-
prove the performance of this type of Peer-to-Peer networks and enables
the Resource Space Model to support decentralized applications.

8.2.2 Integrating Resource Space with Gossip

As shown in Fig. 8.2, peers can be classified into communities belonging
to the leaves of the partition tree. Each peer maintains neighbors with a hi-
erarchical structure, where the number of levels a peer maintains depends
on the depth that the peer lies in the partition tree.

8.2 Incorporating Resource Space with Unstructured Peer-to-Peer 183

Taking a peer p in the bottom left-hand community of the partition tree
for example, it should maintain its neighbors at four layers, denoted as
View(i) where 0≤i≤3. View(i) is a set/list containing the neighbors’ infor-
mation (IP address etc.) that shares the nearest common ancestor at ith
level with p. Therefore p’s View(3) maintains the information of some
peers within the same community, while p’s View(2) maintains the infor-
mation of its neighbors sharing the nearest common ancestor at level 2,
and so on. The dashed lines show the mapping from the partition tree into
the real Peer-to-Peer network.

When a peer sends a query, it will make a decision which level(s) in its
view should be selected to forward the query (categories of that level are
relevant to the query). Then, neighbor(s) at that level will be selected to
forward the query. When a query reaches a community, a gossip-based
mechanism will be adopted to disseminate the message. The peer that re-
ceives and could answer the query sends back the resources.

In the partition tree, the universe resource is Level0. The universe space
is divided into the categories (e.g., China and America in Fig. 9.1(b)) con-
stituting Level1. The categories of Level1 are further partitioned into finer
categories constituting Level2, and so forth.

The Resource Space Model provides multi-dimensional classifications
for accurately locating queries of multiple facets according to the content
of query.

184 Chapter 8 Unstructured Peer-to-Peer Resource Space

Fig. 8.2. Incorporating the resource space with the Peer-to-Peer network.
A peer p has views of four levels: View(3), View(2), View(1) and
View(0). View(3) maintains its neighbors of the same community.
View(2), View(1) and View(0) maintain long links pointing to the
neighbors of the other communities that shares the nearest common ances-
tor at ith (i.e., 2, 1, 0) level with p.

8.3 The Construction Mechanism

It is easy for a newly joined peer to know the partition hierarchy by con-
tacting an introducer. So we assume that all peers share a consistent
knowledge of partition.

The approach to determine the category of a new peer varies with appli-
cations. For example in an e-science environment, every peer can use a set
of keywords to describe the papers it manages. Let A and B be term vec-

8.3 The Construction Mechanism 185

tors of a new peer and a category respectively, the similarity between the
new peer and the category can be measured by cosθ= A•B/(||A||•||B||),
(Berry et al., 1999). The category with the maximum similarity value can
be chosen as the candidate category that the new peer belongs to. The fi-
nal classification decision can be made by considering the application re-
quirement, for example, classification by journal name or publisher.

Other techniques that can be used to help classification include Decision
Tree (Quinlan, 1993), Bayes Classification (Duda and Hart, 1973), Neural
Network (Ripley, 1996), Genetic Algorithms (Mitchell, 1996), k-nearest
Classification (James, 1985) and Rough sets (Pawlak, 1991).

The static partition of the resource space can bring benefits to the Peer-
to-Peer system. When a new peer joins, it just needs to contact one peer
which will feed back the partition information. Using the partition infor-
mation, the peer determines which category it belongs to. If some resource
indices included in the peer belong to the other categories, the indices are
reissued to other peers in charge of those resource categories. Using the in-
formation the introducer provides, the peer contacts the peers in the cate-
gories it belongs to and updates its neighbors’ information.

Along with peers’ joining, the leaf categories produced in the aforemen-
tioned mechanism can be further partitioned dynamically into two parts.
The dynamic partition of leaves can be realized through a group size limit
gl. When the size exceeds the limit, the group is partitioned into two parts
of size ⎣ ⎦2/gl and ⎡ ⎤2/gl respectively.

The dynamic partition of the space works well with the skewed data dis-
tribution like the power-law distribution in many circumstances. Mean-
while, the static characteristics of the resource space partition improve the
scalability of Peer-to-Peer system that peers join and depart autonomously
and frequently, and reduce the cost of update when peers join or depart.

The disseminated message contains the content and some assistant in-
formation:

1. the type of the message, which could be join, leave, issuing, or query;

2. time to live (TTL) of the message, which is used in the join, issuing
and query messages;

3. a list of identifiers of the peers that have received the message; and,

4. the IP address of the message initiator.

The following are notations for easier discussion:

186 Chapter 8 Unstructured Peer-to-Peer Resource Space

1. fanout ⎯ the number of neighbors one peer selects to disseminate
when it receives a message;

2. TTL (Time To Live) ⎯ the iterative rounds for a message to dissemi-
nate;

3. outView(i) ⎯ the neighbors that peer i can send messages to; and,
4. inView(i) ⎯ the neighbors that peer i can receive messages from.

8.3.1 Resource Index Issuing Process

When a resource index is issued by one peer, the peer r first decides the
category the resource belongs to by utilizing the partition information of
the resource space. A limit l restricting the whole process should be set.
Along with each hop the message has transferred, l will be reduced by one.
Then the peer forms an issuing message including the resource index, and
sends the message to one of the peers in that category through its level
views. When a peer receives the message, it first decides whether to add
the index to its maintaining repository in consideration of its capacity. If
the capacity exceeds its upper limit, then it randomly selects one neighbor
from its proper level view and disseminates the issuing message. The issu-
ing process will proceed until the resource index is accepted or l reaches
zero. When l is zero, peer r also joins the community to which the index
belongs to manage the resources.

8.3.2 Peer Join Process

When one peer joins the system, it first connects to one of the introducers.
With the information fed back from the introducer, the newly joined peer
decides its category with reference to the categories of its major resources.
If there is more than one community in the category, the introducer ran-
domly chooses a community. Then, the introducer forms a join message
including the joining peer’s information, and forwards the message to one
of the peers in that community utilizing its level views.

During the process, a limit sl restricting the whole steps of dissemina-
tion should be set. Along with each hop the message transferred, sl will be
reduced by one. When a peer in the community receives the message, it
first decides whether to add the joining peer to its view with reference to
its view size. If this causes the overflow of the view size, it forwards the
join message to one randomly selected neighbor in the community until the
joining peer is accepted or sl is zero. If the joining peer is still not accepted

8.3 The Construction Mechanism 187

by any peer when sl reaches zero, the community is regarded as full and a
new community should be created in the same resource space position as
the full community. The joining peer forms its level views by exchanging
information with the peers in the same category.

The newly joined peer maintains the index information of its major re-
sources and issues the resource indices not belonging to its resource space
position to the system adopting the aforementioned resource issuing
mechanism.

With continuously peer joining, some communities become so large that
decreases the effect of query routing. The following mechanism is adopted
to split a large community into two parts of approximately equal size:
Every peer initiates a random interaction with its neighbors when it has not
decided to join which part. If the contacted peer is undecided also, both
the initiating peer and the contacted peer choose different communities;
otherwise, the initiating peer joins the part different from the contacted
peer. Fig. 8.3 depicts the peer join process.

Fig. 8.3. Peer join process. Step 1: A new peer contacts the Introducer;
Step 2: The new peer finds the community it belongs to; Step 3: The new
peer contacts one peer in that community; Step 4: the new peer establishes
its views. The dashed lines denote the links to the new peer’s neighbors by
establishing its views.

188 Chapter 8 Unstructured Peer-to-Peer Resource Space

8.3.3 Peer Departure Process

When a peer r wants to depart the system, the following method keeps the
peers in r’s inView and those in its outView connected.

For each peer (take peer s for example) in its outView, peer r selects one
peer ID (q for example) from its inView randomly, then forms a failure
message including q and forwards it to s. When s receives the message, it
substitutes r’s ID(r) with q in its inView, then forwards a message with r
and q. When q receives the message, it updates r with s in its outView. So
in this way, the withdrawal behavior of a pivot peer does not lead to the
partition of the whole network.

When a peer crashes without notifying other peers, the peers detect this
situation by interchanging their states periodically. If no response within a
certain period elapsed is returned from one of its neighbors, the peer re-
gards it as being crashed and removes it from the corresponding view (Re-
nesse et al, 1998).

Peer departure reduces the size of a community. It is necessary to merge
communities in the same parent category if an existing community is
small. The following is the approach to merge communities:

If the size of community p becomes small, it needs to coalesce with an-
other community, and it should find its siblings in the partition tree first. If
the siblings of the community p are also leaves of the partition tree and the
number of its siblings is one (q, for example), then coalesce p and q, make
their direct parent a leaf, and assign the coalesced community to that leaf.
If the number of its siblings is larger than one, then select one leaf that has
the least load and coalesce with the selected community.

If the siblings of the community p are not the leaves of the partition tree,
perform the depth-first search in the sub-tree of the partition tree rooted at
one of its siblings (e.g., q) until the leaves (e.g., r) of the sub-tree are
reached, and then merge the two communities r and p into one.

Fig. 8.4 depicts the peer departure process.

8.3 The Construction Mechanism 189

Fig. 8.4. Peer departure process. Step 1: The depart peer informs its
neighbors; Step 2: The peer leaves the Peer-to-Peer network; Step 3:
Neighbors establish new links. The dashed lines denote the links that will
be removed since the depart peer leaves the network, and the darker lines
denote the new links established by the depart peer’s neighbors.

8.3.4 Query Processing Process

Before sending a query, the peer needs to compare the query with its index
on resources, and then adopts different mechanisms to gossip queries by
making use of the neighbor lists at different levels. In most applications,
the resources a peer possesses reflect its interests, and the queries from the
peer would be similar to its interests with high probability. In this situa-
tion, the query could be answered in the community the query-initiator be-
longs to, and only the neighbor list at the lowest level is needed for the
query processing. While the query fits the other level, it is routed to that
appropriate category, and a gossip process initiates there. When the query
corresponds to more than one level, several gossip processes take place in
parallel in the corresponding categories. The top-k correlative categories
are selected to make trade-off between the whole network cost and the ac-
ceptable results.

Hamming distance dist(α1, α2) between vectors α1 and α2 in a discrete
data space is the number of dimensions on which the corresponding com-
ponents of α1 and α2 are different (Qian et al., 2006). The distance be-
tween a vector α=(a1, a2, …, ad) and a discrete rectangle S=S1×S2×…×Sd
can be defined as:

190 Chapter 8 Unstructured Peer-to-Peer Resource Space

 dist(α, S) = ∑ =

d

i ii Saf
1

),(, where f(ai, Si) =
⎩
⎨
⎧
1
0

otherwise
Sa ii ∈ .

The distance measures how many components of vector α are not con-
tained in the corresponding component sets of rectangle S. In Resource
Space Model, Si corresponds to a specified coordinate set of the ith axis.

Haming distance is suitable for measuring distance in multidimensional
non-ordered discrete data space, which is regarded as the correlative metric
between query and the categories.

8.4 Performance Analysis

8.4.1 Reliability

The following analysis shows that the proposed mechanisms are reliable.
Suppose the number of peers in the system is n, and the resource space
partitions the peers into m categories. For simplicity, group members are
assumed to be evenly distributed, that is, the sizes of categories are equal
to n/m approximately. The following notations are used in the following
discussion.

1. s⎯the source peer of one message;

2. ε⎯the probability of message loss during the gossip process.

3. τ⎯the probability of a peer crash during the gossip process.

4. A⎯the event that there is a directed path from s to all peers in the
category s belongs to.

5. B⎯the event that there is at least one link directed from s to other
categories.

6. P(C) ⎯the probability that the event C happens.

Gossip style protocols are reliable in a probabilistic sense. According to
the analysis in (Kermarrec et al, 2003), the probability of a given peer re-
ceiving the disseminated message is 1−(1/nfanout)(1 + o(1)). And if the mes-
sage loss is considered, the probability is 1−(1/n(1−ε) fanout)(1+o(1)).

Messages can be disseminated in three different mechanisms:

8.4 Performance Analysis 191

1. Using the partition tree, the query initiator selects one level in its
views. Thereafter it randomly selects one peer in its view at this
level, and a gossip process is initiated with the selected peer being the
source of the gossip. In this precondition: P(every peer in the selected
category receives the message) = P(A)·P(B) = (1 − (1/(n/m)(1−ε)fanout) (1
+ o(1)))·(1−ε)·(1−τ). Applications could make the messages commu-
nicate reliably through protocols like TCP, and in this way, ε would
approach zero. The large number of peers n makes the protocol reli-
able.

2. The query initiator randomly selects one peer from each of its views
at different levels, and disseminates the message to them, (the number
of levels is m at most). The selected peers launch the gossip process
in its community in parallel. And under the condition: P(every peer
in the system receives the message)= Pm(A)·P(B)= (1−(1/(n/m)(1−ε) fan-

out)(1+o(1)))m ·(1−ε)·(1−τ). In the selection process, if sending mes-
sage to the selected peer is failed, another peer could be selected ran-
domly in the view at the same level. In this way, the negative
influence of m in the previous equation is further reduced to guarantee
the reliability of the mechanism.

3. The query initiator selects peers in views of different levels with dif-
ferent probabilities. And then the selected peers receive the message
and disseminate it in their communities. Therefore, P(every peer in
the selected communities receives the message) = Pl(A)·P(B), where l
is the number of communities being selected and 1 ≤ l ≤ m. Conse-
quently, Pm(A)·P(B) ≤ Pl(A)·P(B) ≤ P(A)·P(B), and the gossip process
adopting the proposed mechanism is reliable.

8.4.2 Hop Count Expectation

With reference to the work introduced in (Pittel, 1987), the total rounds
TTL(n, fanout) in the gossip-style system, which is necessary to infect an
entire group of size n obeys:

TTL(n, fanout) = logn•(1/fanout+1/log(fanout)) + c + o(1),

where c is a constant.

A tradeoff exists between fanout and TTL in the network of n peers.
Therefore in our systems, all peers are partitioned into different categories
by one resource space. Assume the size of categories is equal approxi-
mately, i.e., n / m, the round of message dissemination in the sub-partitions

192 Chapter 8 Unstructured Peer-to-Peer Resource Space

is: TTL(n / m, fanout). Considering the category selecting process, the hop
count of message dissemination TTL1(n, fanout) in the whole system is as
follows:

TTL1(n, fanout)

= 1 + TTL(n / m, fanout)

= log(n/m)•(1/fanout+1/log(fanout)) + c1 + o(1), where c1 is a constant.

8.5 Experimental Evaluation

To compare the flat gossip mechanism and the RSM-based gossip mecha-
nisms, experiments are carried out on two kinds of directed networks of
1000 peers: random networks and random power-law networks. Each ex-
periment with different parameters (fanout and TTL) is repeated 100 times
on each network we generated, and the initial peer is randomly selected at
each time. The average value of these 100 results is used to illustrate the
result.

Considering the graph of n nodes where the edge between each pair of
nodes exists with probability [log(n) + c + o(1)] / n. In the prerequisite,
the probability that the graph is connected goes to exp(- exp(- c)), where c
is a constant. And the target is reached by defining the appropriate View
sizes of nodes. The gossip systems with size n have promising effect when
the fanout value is set to be around log(n).

The following are two metrics to compare the performance of the two
mechanisms:

1. Average network load, and

2. The number of peers that do not receive the message.

8.5.1 Experiments in Random Networks

An epidemic algorithm must make a tradeoff between scalability and reli-
ability: larger views reduce the probability that nodes are isolated or that
the network is partitioned, while smaller views help the network obtain
better scalability.

For the random networks, the number of neighbors of each peer at the
lowest level is 10 on average in our experiments. And the view size of

8.5 Experimental Evaluation 193

other levels is rather smaller. It is 2 in this simulation. The community size
is 100 in the experiments.

8.5.2 Experiments in Random Power-law Networks

Many large networks like the hyperlink network follow the power-law dis-
tribution of node degrees (Leland et al., 1994). The degree distribution
is τ−= Akpk , where ∑ =

−− = max

2
1 k

k
kA τ , k is the degree, kmax is the maxi-

mum degree, and 0>τ is the exponent of the distribution (Sarshar et al.,
2004). Researches have shown that only when the virus accumulates to
certain critical threshold, it will be prevalent. And, the critical threshold
does not exist when the virus on the networks follows the power-law dis-
tributions. The virus does not need to accumulate to certain threshold to
propagate quickly through hubs of the network.

The reason of considering power-law networks is that some unstruc-
tured Peer-to-Peer networks are characterized by random power-law and
heavy tailed degree distributions. To keep the peers connected, we adjust
degree from 15 to 100 following the aforementioned distribution with τ =
2.0 in constructing random power-law networks. For each link, the start
peer and the end peer are selected randomly, and as a result, the random
power-law graph is constructed with average 14 neighbors at the lowest
level in the experiment. The view size of other levels is 2, a rather small
size. The community size is 100.

The simulation results from gossip networks without considering se-
mantic partitions are denoted as FlatGossip, while the results making use
of semantic partitions are denoted as RSMGossip. In the RSM-based gos-
sip mechanisms, different number of gossip levels is chosen according to
the comparison between the query and the category of the initiator. If the
query strictly belongs to one category, then routing the query to other cate-
gories will not bring any benefit. And in this situation, the results are de-
noted by RSMGossip1.

When the query corresponds to several categories, it should be routed to
all the categories that are potential to have the answers. For example, the
query could be answered in 3 or 5 categories, and the results are denoted
by RSMGossip3 and RSMGossip5.

Both the random networks and the random power-law networks have
the same network loads, if the networks have the equal size and the gossip
mechanisms have the same parameters (fanout and TTL). Fig. 8.5 shows

194 Chapter 8 Unstructured Peer-to-Peer Resource Space

the average network load according to different parameters. The horizon-
tal axis denotes the parameter TTL, and the vertical axis denotes the aver-
age network load during 100 times operations.

(a) fanout = 2 on random and power-law networks.

 (b) fanout = 3 on random and power-law networks.

fanout = 2, Random & Zipf

0

2000

4000

6000

8000

10000

5

TTL

N
et

w
or

k
Lo

ad FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

6 7 8 9 10

fanout = 3, Random & Zipf

0

2000

4000

6000

8000

10000

12000

5 6 7 8

TTL

N
et

w
or

k
Lo

ad FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

8.5 Experimental Evaluation 195

Fig. 8.5. Comparisons of the network load of different mechanisms on the
networks of 1000 peers.

As Fig. 8.5(a) presents, we set the fanout value as 2 uniformly and range
TTL from 5 to 10. Fig. 8.5(b) and Fig. 8.5(c) are obtained in the similar
way by using different parameter values. We can see from the figures that
the network loads are reduced sharply when adopting the partition-based
gossip mechanisms. Taking fanout = 3 for example, when TTL approaches
8, about 88.9%, 66.7% and 44.5% network load is reduced by RSMGos-
sip1, RSMGossip3 and RSMGossip5 respectively compared with the flat
gossip mechanism. This justifies our approach.

fanout = 4, Random & Zipf

0

5000

10000

15000

20000

25000

5

TTL

N
et

w
or

k
Lo

ad FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

6 7

196 Chapter 8 Unstructured Peer-to-Peer Resource Space

(a) fanout = 2 on random networks.

 (b) fanout = 3 on random networks.

fanout = 2, Random

0

200

400

600

800

1000

5 6 7 8 9 10

TTL

N
um

be
r

of
 N

od
es

 W
ith

 N
o

M
es

sa
ge

 R
ec

ei
ve

d

FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

fanout = 3, Random

0
100
200
300
400
500
600
700
800

5 6 7 8

TTL

N
um

be
r

of
 N

od
es

 W
ith

 N
o

M
es

sa
ge

 R
ec

ei
ve

d

FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

8.5 Experimental Evaluation 197

 (c) fanout = 4 on random networks.

Fig. 8.6. Comparisons of the number of peers that do not receive mes-
sages on the 1000-peer randomly connected networks.

During message dissemination, the number of peers that do not receive
the disseminated messages is an important metric. Compared with previ-
ous algorithms, the number of peers that do not receive messages de-
creases evidently after adopting the proposed mechanisms as presented in
Fig. 8.6. Taking fanout = 3 for example, when TTL approaches 6, about
36.44, 109.32 and 182.2 number of peers, which should receive the dis-
seminated message, have not received it when using RSMGossip1,
RSMGossip3 and RSMGossip5 mechanisms separately. Meanwhile it is
416.57 for the flat gossip mechanism. The performance is improved con-
siderably though it is partially because the range is decreased for the RSM-
based mechanism. This justifies the rationale of the RSM-based mecha-
nism.

fanout = 4, Random

0
50

100
150
200
250
300
350
400

5 6 7

TTL

N
um

be
r

of
 N

od
es

 W
ith

 N
o

M
es

sa
ge

 R
ec

ei
ve

d

FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

198 Chapter 8 Unstructured Peer-to-Peer Resource Space

(a) fanout = 2 on power-law networks.

 (b) fanout = 3 on power-law networks.

fanout = 2, Zipf

0

200

400

600

800

1000

5 6 7 8 9 10

TTL

N
um

be
r

of
 N

od
es

 W
ith

 N
o

M
es

sa
ge

 R
ec

ei
ve

d

FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

fanout = 3, Zipf

0
100
200
300
400
500
600
700
800

5 6 7 8

TTL

N
um

be
r

of
 N

od
es

 W
ith

 N
o

M
es

sa
ge

 R
ec

ei
ve

d

FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

8.5 Experimental Evaluation 199

(c) fanout = 4 on power-law networks.
Fig. 8.7. Comparisons of the number of peers that do not receive messages
on the 1000-peer random power-law networks.

For the random power-law networks, the results about the number of
peers that do not receive messages are shown in Fig. 8.7. We can see the
similar phenomena as those on the random networks: the number of peers
that do not receive messages is also reduced sharply compared with the
partition-based gossip mechanisms with the flat gossip. Taking fanout = 3
for example, when TTL approaches 6, about 35.77, 107.31 and 178.85
number of peers on average do not receive the disseminated message when
making use of RSMGossip1, RSMGossip3 and RSMGossip5 mechanisms
respectively. Meanwhile for the flat gossip mechanism it is 455.13. The
results are better than those on the random networks for the RSM-based
mechanisms, while the flat gossip mechanism performs worse on the ran-
dom power-law networks than those on the random networks. This also
declares the necessary of our approaches.

fanout = 4, Zipf

0

100

200

300

400

500

5 6 7

TTL

N
um

be
r

of
 N

od
es

 W
ith

 N
o

M
es

sa
ge

 R
ec

ei
ve

d

FlatGossip
RSMGossip1
RSMGossip3
RSMGossip5

200 Chapter 8 Unstructured Peer-to-Peer Resource Space

8.6 Architecture of a RSM-based Gossip Network

The architecture of the Peer-to-Peer network adopting the proposed hierar-
chical gossip mechanism is depicted in Fig. 8.8.

Fig. 8.8. Peer architecture in the RSM-based gossip network.

The framework includes the following modules:
1. The API/User Interface facilitates users’ operations such as joining in

and departing from the network, issuing some resources and generating
queries.

2. The Semantic Vector Extractor makes use of some technologies in in-
formation retrieval area (Vector Space Model and Latent Semantic In-
dex, etc.) to extract term vectors of resources and queries. The term
vectors can be used to help decide the category of the newly joined
peer belongs to.

3. The Neighborhood List Maintainer maintains the list of different levels
of the neighbors in the network.

4. The Local Search Engine is in charge of searching in the local reposi-
tory when some queries are reached.

8.7 Summary 201

5. The Gossip Management module executes the proposed gossip mecha-
nisms, such as selecting the appropriate levels and choosing some
peers in that level view to disseminate corresponding messages.

6. In the Local Repository and the RSM (Resource Space Model) manage
the resources (papers in e-science application) stored in the peer and
the global resource space partition structure respectively.

7. The Communication management module is responsible for the com-
munication with the peers in the Peer-to-Peer network.

8.7 Summary

Classification is a kind of basic semantics that people often use to manage
the contents of versatile resources in daily life. The Resource Space Model
is a semantic model for sharing and managing various resources using
normalized classification semantics. Gossip-based Peer-to-Peer techniques
are reliable and scalable protocols for information dissemination. Incorpo-
rating the Resource Space Model with the gossip-based techniques can
construct a new decentralized resource sharing mechanism (Zhuge and Li,
2007b). The unstructured Peer-to-Peer Resource Space owns the advan-
tages of both the Resource Space Model and the unstructured Peer-to-Peer
network, and can synergy the normalization and autonomy in decentralized
resource management. The Resource Space Model’s normalization theory,
integrity theory and operation language can support semantic-rich applica-
tions over Peer-to-Peer networks. Theoretical analysis and experiments
presented in this chapter validate the feasibility of the mechanism.

It is an interesting issue to apply the operations of the Resource Space
Model like join and split to the Peer-to-Peer resource space system to real-
ize a scalable RSM. To realize this, we need to investigate the effect of the
operations on the Peer-to-Peer network.

Chapter 9 Probabilistic Resource Space Model

Incorporating probability with the Resource Space Model can deal with
the uncertainty in resource classification and resource operation.

9.1 Basic Concepts

The probabilistic event in the Probabilistic Resource Space Model is that a
resource belongs to a certain class. Prob(r∈T) denotes the membership
probability of resource r belonging to class T. T may represent a class of
resources of a resource space, an axis, a coordinate, a point or any of their
combination by set operations.

The following are two strategies on how to specify the probabilistic dis-
tribution of a given resource r belonging to a resource space RS.

1. For any resource r, specify its membership probability distribution on
every point of RS.

2. For each axis X of RS, specify the membership probability distribution
of any resource r on every coordinate of X.

The second strategy is more feasible because of the following reasons:

1. The amount of points in resource space RS(X1, X2, … , Xn) is
|X1|×|X2|×…×|Xn| and the amount of coordinates is |X1|+|X2|+…+|Xn|,
where |X| is the number of coordinates on X. Large number of points
makes it difficult to assign the membership probability of every re-
source to every point.

2. Each axis in a resource space represents a resource classification
method. For a point p(Ci1, Ci2, …, Cin), Cij is at axis Xj (1≤j≤n), and
R(p)=R(Ci1)∩R(Ci2)∩…∩R(Cin). Each point is a combination of all
axes of RS and involves all classification methods used in resource
space. It is more feasible for users and automatic classification algo-
rithms to specify the membership probability distribution of resource
r by axis.

204 Chapter 9 Probabilistic Resource Space Model

Definition 9.1. The resource space RS(X1, X2, … , Xn) is a probabilistic re-
source space if for any resource r and any axis Xi of RS, there exists a
membership probability function βri from Xi to the real number interval [0,
1] such that βri(Cij) represents the probability of resource r belonging to
class R(Cij) for any top-level coordinate Cij at Xi.

Fig. 9.1. An example of probabilistic resource space.

According to above definition, any resource r in a probabilistic resource
space RS(X1, X2, … , Xn) has n membership probabilistic functions. Take
the probabilistic resource space RS(A, B) in Fig. 9.1 for example, resource
r has two membership probabilistic functions, βr-A: A→[0, 1] and βr-B:
B→[0, 1]. βr-B(b1)=0.2 means that the probability of resource r belonging
to coordinate b1 is 0.2 at axis B.

Resource r belongs to resource space RS(X1, X2, … , Xn) if and only if
there exists at least one axis Xi such that the membership probabilistic
function of r on Xi has been explicitly specified.
 From the membership probabilities on the coordinates, the membership
probabilities on other classes in the classification hierarchy can be evalu-
ated as follows:

1. For axis Xi={Ci1, Ci2, …, Cim}, since
R(Xi)=R(Ci1)∪R(Ci2)∪…∪R(Cim), the probability of r belonging to Xi
falls into the interval [max{βri(Ci1), …, βri(Cim)}, min{1, βri(Ci1)+
βri(Ci2)+…+βri(Cim)}].

2. For point p(C1,j1, C2,j2, …, Cn,jn), since R(p) = R(C1,j1) ∩ R(C2,j2) ∩ …
∩ R(Cn,jn), the probability of r belonging to p falls into the interval [0,
min{βr1(C1,j1), …, βrn(Cn,jn)}].

3. For a hierarchical coordinate, the probability of r belonging to a coor-

9.1 Basic Concepts 205

dinate C’ in the hierarchy depends on the probability that r belongs to
its parent C, i.e., βri(C’) = Prob(r∈R(C’) | r∈R(C)). Since C’ is a child
coordinate of C, Prob(r∈R(C’)) = Prob(r∈R(C’) ∧ r∈R(C)) holds.
According to Prob(r∈R(C’)∧r∈R(C)) = Prob(r∈R(C)) ×
Prob(r∈R(C’) | r∈R(C)), we have Prob(r∈R(C’)) = βri(C) × βri(C’).
So the probability of r belonging to R(C’) is βri(C) × βri(C’).

Take Fig. 9.1 for example, the probability of resource r belonging to
axis A is Prob(r∈R(A))∈[max{βr-A(a1), βr-A(a2), βr-A(a3)}, min{1, βr-

A(a1)+βr-A(a2)+βr-A(a3)}]=[0.3, 0.6]. The probability of resource r belong-
ing to point p(a2, b2) is Prob(r∈R(p(a2, b2))) ∈ [0, min{βr-A(a2), βr-B(b2)}] =
[0, 0.3].

Fig. 9.2. Conditional probabilities in coordinate hierarchy.

 In Fig. 9.2, the axis Area is used to classify scientific publications
according to their area. In the classification hierarchy of coordinate CS
(Computer Science) on axis Area, DB (DataBase) is a sub-class of CS and
RDB (Relational DataBase) is a sub-class of DB. For resource r and its
membership probability function βr, βr(RDB) represents the conditional
probability of r belonging to RDB given r belonging to DB has occurred,
i.e. βr(RDB)=Prob(r∈R(RDB)|r∈R(DB)). Similarly, βr(DB)=
Prob(r∈R(DB)|r∈R(CS)). Since DB is a sub-class of CS, the probability of
r belonging to DB is Prob(r∈R(DB)) = Prob(r∈R(DB)∧r∈R(CS)) =
Prob(r∈R(CS)) × Prob(r∈R(DB)|r∈R(CS)) = βr(CS) × βr(DB). In fact, the
probability of r belonging to a sub-coordinate is the multiplication of all
the conditional probabilities along the path from the top-level coordinate to

206 Chapter 9 Probabilistic Resource Space Model

this sub-coordinate. So the probability of r belonging to RDB is βr(CS) ×
βr(DB) × βr(RDB).

9.2 Normal Forms of Probabilistic Resource Space

9.2.1 The First Normal Form and Second Normal Form

The first normal form of the Resource Space Model is used to eliminate
the redundancy caused by name duplication between coordinates. It also
applies to the probabilistic Resource Space Model. The second normal
form of the Resource Space Model is to eliminate the redundancy caused
by coordinate dependency. Any second normal form resource space is also
a first normal form resource space.

Definition 9.2. A probabilistic resource space RS(X1, X2, … , Xn) is a 2NF
resource space if for any resource r and any two coordinates C and C’ on
Xi (1≤i≤n), Prob(r∈R(C) ∧ r∈R(C’))=0 holds.

Above definition is actually an explanation of the 2NF of Resource
Space Model from probability point of view.

Theorem 9.1. For axis X, if any two coordinates on X are independent of
each other, then for any resource r, Prob(r∈R(X)) = (())

C X
Prob r R C

∈

∈∑ ≤

1 holds.

Proof. For axis X = {C1, C2, …, Cm}, R(X) = R(C1)∪R(C2)∪…∪R(Cm)
holds. Because any two coordinates Ci and Cj (1≤i≠j≤m) on X are inde-
pendent of each other, Prob(r∈R(Ci) ∧ r∈R(Cj))=0 holds. So the probabil-
ity of resource r belonging to R(Ci)∪R(Cj) is the sum of the probability of
r belonging to R(Ci) and the probability of r belonging to R(Cj), i.e.
Prob(r∈R(Ci) ∨ r∈R(Cj)) = Prob(r∈R(Ci)) + Prob(r∈R(Cj)). So the prob-
ability of r belonging to X is the sum of the probability of r belonging to
each coordinate on X, i.e. Prob(r∈R(X)) = (())

C X
Prob r R C

∈

∈∑ holds. 

9.2 Normal Forms of Probabilistic Resource Space 207

In theorem 9.1, (())
C X

Prob r R C
∈

∈∑ < 1 means that there is a probabil-

ity of r not belonging to axis X. For a resource space RS satisfying 2NF,
the probability of r belonging to any axis can be evaluated from the mem-
bership probability function of r on this axis.

9.2.2 The Third Normal Form

A more general definition of fine classification in the probabilistic Re-
source Space Model is given as follows:

Definition 9.3. Let X={C1, C2, …, Cn} be an axis and C’ be a coordinate at
another axis X’, we say that X finely classifies C’ (denoted as C’/X) if and
only if for any resource r:

1. Prob(r∈(R(C’)∩R(Ci)) ∧ r∈(R(C’)∩R(Cj)) = 0 for 1≤i≠j≤n; and,
2. Prob(r∈R(C’)) = ((')| ()) (())

C X
Prob r R C r R C Prob r R C

∈

∈ ∈ × ∈∑

hold.

According to definition 9.3 and the total probability theorem, coordinate
C’ can be finely classified by axis X if and only if the probability of re-
source r belonging to R(C’) can be partitioned into the probabilities of r
belonging to R(C’)∩R(C1), R(C’)∩R(C2), ... and R(C’)∩R(Cn) respec-
tively.

For two axes X={C1, C2, …, Cn} and X’={C1’, C2’, …, Cm’}, X finely
classifies X’ (i.e., X’/X) if and only if X finely classifies C1’, C2’, …, and
Cm’. Two axes X and X’ are called orthogonal with each other (i.e., X⊥X’)
if both X’/X and X/X’ hold.

Definition 9.4. A probabilistic resource space RS(X1, X2, … , Xn) satisfies
the third normal form of the Resource Space Model if for any two axes Xi
and Xj (1≤i≠j≤n) in RS, Xi⊥Xj holds.

In the Probabilistic Resource Space Model, for any given 3NF resource
space RS(X1, X2, … , Xn), the following constraints should be satisfied:

Theorem 9.2. Let RS(X1, X2, … , Xn) be a probabilistic resource space sat-
isfying 3NF. For any two axes Xi and Xj (1≤i, j≤n) and resource r in RS,

208 Chapter 9 Probabilistic Resource Space Model

i

(())
C X

Prob r R C
∈

∈∑ =
' j

(('))
C X

Prob r R C
∈

∈∑ holds.

Proof. Since RS satisfies 3NF, coordinate C at axis Xi can be finely classi-
fied by axis Xj. So Prob(r∈R(C)) =

' j
((() (')))

C X
Prob r R C r R C

∈

∈ ∧ ∈∑ holds. Thus

i

(())
C X

Prob r R C
∈

∈∑ =
i ' j

((() (')))
C X C X

Prob r R C r R C
∈ ∈

∈ ∧ ∈∑ ∑ holds. On

the other hand, coordinate C’ at axis Xj can be finely classified by axis Xi,
Prob(r∈R(C’)) =

i

(((') ()))
C X

Prob r R C r R C
∈

∈ ∧ ∈∑ holds. Thus

j
(('))

C X
Prob r R C

∈

∈∑ =
' j i

(((') ()))
C X C X

Prob r R C r R C
∈ ∈

∈ ∧ ∈∑ ∑ holds.

Therefore
i

(())
C X

Prob r R C
∈

∈∑ =
' j

(('))
C X

Prob r R C
∈

∈∑ holds. 

 Theorem 9.2 indicates that for any two axes Xi and Xj of a resource space
satisfying 3NF, the probability of resource r belonging to Xi is equal to the
probability of r belonging to Xj.

Theorem 9.3. Let RS(X1, X2, … , Xn) be a 3NF probabilistic resource
space. For any axis Xi (1≤i≤n) and any coordinate C at Xi, Prob(r∈R(C))＝

[i]=
(())

p X C
Prob r R p∈∑ holds, where p represents a point in RS and p[Xi] is

the projection of p at axis Xi.

Proof. Let T be the union of all points whose projections on Xi are C. So
R(T) = R(C) ∩

j j

j

1 j i n

()
C X

R C
≤ ≠ ≤ ∈
I U . Since resource space RS satisfies 3NF,

any two points in RS are independent of each other. So we have
Prob(r∈R(T)) =

[i]=
(())

p X C
Prob r R p∈∑ . On the other hand,

Prob(r∈R(T))=Prob(r∈(R(C)∩
j j

j

1 j i n

()
C X

R C
≤ ≠ ≤ ∈
I U)) = Prob(r∈(R(C) ∩

j

1 j i n

()R X
≤ ≠ ≤
I)) holds. Since coordinate C can be finely classified by axis Xj

(1≤j≠i≤n), R(C) is a subclass of R(Xj). So Prob(r∈R(T)) =

9.3 Operations of Probabilistic Resource Space 209

Prob(r∈(R(C)∩ j

1 j i n

()R X
≤ ≠ ≤
I)) = Prob(r∈R(C)) holds. Therefore

Prob(r∈R(C))＝
[i]=

(())
p X C

Prob r R p∈∑ holds. 

9.3 Operations of Probabilistic Resource Space

9.3.1 Point Query

The result of a point query is a set of points, each of which contains a set
of resources with membership probability. For a resource space RS, the
point query operation is used to select the desirable points according to a
given restriction. This type of query can be denoted as σp(RS)={p | p∈RS ∧
Fp(p)}, where Fp is a logic expression. The basic form of Fp is: pm[Xi] θ Y,
where Y may be pn[Xj] or just a noun phase in domain ontology, pm and pn
are points and θ represents =, ≠, <, ≤, ≥ or >. Fp is usually a logical combi-
nation of basic forms by using ∧, ∨ and ¬.

Fig. 9.3. An example for point query.

The probabilistic Resource Space Model uses the following SQL-like
ROL statement to support point queries. The conditional expression in this
statement is the logical combination of restrictions on the projections on

210 Chapter 9 Probabilistic Resource Space Model

axes of points.

SELECT POINT p FROM RS(X1, … Xn)
[WHERE <conditional expression>]

Take Fig. 9.3 as an example, if the user wants to query all resources in
points p1(a2, b1) and p2(a2, b2), the logical expression should be σp(RS)={p |
p∈RS ∧ p[A]=a2 ∧ (p[B]=b1 ∨ p[B]=b2} and the issued point query state-
ment should be:

SELECT POINT p FROM RS(A, B)
WHERE p[A]=a2 AND (p[B]=b1 OR p[B]=b2)

Thus, the points p1(a2, b1) and p2(a2, b2) will be returned with resources and
their membership probabilities belonging to these two points.

9.3.2 Resource Query

The query result of a resource query is a set of resources, each of which
satisfies the specified restrictions on membership probabilities. This type
of query can be represented as σr(RS) = {r | r∈RS ∧ T=σp(RS) ∧ Fr(r, T)},
where Fr is a logic expression and σp(RS) is a point query result. The basic
form of Fr is Prob(r∈T) θ Y, where Y may be a real number or a real num-
ber interval. If Y is a real number, θ is =, ≠, <, ≤, ≥, or >. If Y is a real
number interval, θ is∈ or ∉.

Fig. 9.4. An example for resource query.

The probabilistic Resource Space Model uses the following statement to
support resource queries.

9.3 Operations of Probabilistic Resource Space 211

SELECT RESOURCE r FROM RS(X1, … Xn)

[WHERE <conditional expression>]

The <conditional expression> in this statement is a logical expression
combination of restrictions on membership probabilities. The <conditional
expression> takes the following form: Prob(r)θY IN point-query-sub-
expression, where Prob(r)θY has the same meanings as mentioned above
and point-query-sub-expression is a point query statement returning a set
of points. So Prob(r)θY IN point-query-sub-expression represents a logical
expression that Y and the probability of resource r belonging to point-
query-sub-expression satisfies the relation θ.

For example in Fig. 9.4, if the user wants to query all resources which
belong to point p(a2, b2) with the probability greater than 0.5, the corre-
sponding logical expression is σF(RS)={r | r∈RS ∧ T={p | p∈RS ∧ p[A]=a2
∧ p[B]=b2} ∧ Prob(r∈T)>0.5} and the issued resource query statement
should be:

SELECT RESOURCE r FROM RS(A, B)
WHERE Prob(r)>0.5 IN

 (
 SELECT POINT p FROM RS(A, B)
 WHERE p[A]=a2 AND p[B]=b1
)

 Thus, all resources belonging to point p(a2, b2) with the probability
greater than 0.5 will be returned to users.

9.3.3 Resource Modification

In the classical Resource Space Model, before a resource r can be inserted
into a resource space RS, we have to identify the coordinates which r be-
longs to on each axis in RS.

Take Fig. 9.5 as an example. The resource space RS(Classes, Courses)
is used to manage students according to their classes and selected courses.
Once the resource r has been identified that it belongs to coordinate Data-
base on axis Courses and to coordinate C2 on axis Classes, it can be in-
serted into the point (Database, C2).

212 Chapter 9 Probabilistic Resource Space Model

Fig. 9.5. Insert a resource into a resource space.

From the perspective of probability, r(Courses=Database, Classes=C2)
implies the fact that the membership probability functions of resource r on
axes Courses and Classes are βr-Courses and βr-Classes respectively such that βr-

Courses(Math)=0, βr-Courses(Operating System)=0 and βr-Courses(Database)=1 as
well as βr-Classes(C1)=0, βr- Classes(C2)=1 and βr- Classes(C3)=0.

The process of inserting a resource into a probabilistic resource space is
the same as the classical resource space except that the membership prob-
ability functions in the Probabilistic Resource Space Model can take value
within the range [0, 1].

 The following is the insertion statement used to insert a resource r into a
resource space RS. β1, β2, …, βn are the membership probability functions
of r on axes X1, X2, …, Xn respectively.

INSERT r<β1, β2, …, βn> INTO RS<X1, X2, …, Xn>

The probabilistic Resource Space Model also supports the following de-
lete operation and update operation:

DELETE r FROM RS
[WHERE <conditional expression>]

UPDATE r<βi,…, βj> INTO RS<Xi,…, Xj>
[WHERE <conditional expression>]

9.3 Operations of Probabilistic Resource Space 213

9.3.4 Operations on Probabilistic Resource Space

The Join, Disjoin, Merge and Split operations on the probabilistic Re-
source Space Model can be defined by using the membership probability
function.

Join. Let |RS| be the number of the dimensions of the RS. If two resource
spaces RS1 and RS2 store the same type of resources and have k common
axes, then they can be joined together as one resource space RS such that
RS1 and RS2 share these k common axes and |RS|=|RS1| + |RS2| − k. For any
resource r, we have:

1. r belongs to RS if and only if r belongs to both RS1 and RS2;
2. For any common axis Xi in RS1 and RS2 and any coordinate C on Xi,

let βr, βr’ and βr” be the membership probability function of r at Xi in
RS, RS1 and RS2 respectively. Then βr(C) = α×βr’(C) + (1−α)×βr”(C),
0≤α≤1;

3. For any non-common axis Xj in RS1 and any coordinate C’ at Xj, let βr
and βr’ be the membership probability function of r at Xj in RS and
RS1 respectively. If there exists a common axis Xi such that Xj⊥Xi,
then βr(C’)=βr’(C’) × (ri

i

()
C X

Cβ
∈
∑ / ri

i

'()
C X

Cβ
∈
∑), where βri and βri’ are

the membership probability functions of r at Xi in RS and RS1 respec-
tively. Otherwise, βr(C’)=βr’(C’).

Disjoin. A resource space RS can be disjoined into two resource spaces
RS1 and RS2 that store the same type of resources as that of RS such that
they have k common axes, and |RS|=|RS1| + |RS2| − k. For any resource r,
we have:

1. r belongs to both RS1 and RS2 if and only if r belongs to RS;
2. For any axis Xi in RS1 and any coordinate C on Xi, let βr and βr’ be the

membership probability functions of r on Xi in RS and RS1 respec-
tively, then βr(C)= βr’(C).

Merge. If two resource spaces RS1 and RS2 store the same type of re-
sources and satisfy: 1) |RS1|=|RS2|=n; and, 2) they have n−1 common axes,
and there exist two different axes X' and X” satisfying the merge condition,
then they can be merged into one RS by retaining the n−1 common axes
and adding a new axis X*=X'∪X”. RS is called the merge of RS1 and RS2,
denoted as RS1∪RS2⇒RS, and |RS|= n. For any resource r, we have:

214 Chapter 9 Probabilistic Resource Space Model

1. r belongs to RS if and only if r belongs to either RS1 or RS2;
2. For any common axis Xi and any coordinate C at Xi, let βr, βr’ and βr”

be the membership probability functions of r at Xi in RS, RS1 and RS2
respectively. If r belongs to both RS1 and RS2, then βr(C) = α×βr’(C) +
(1−α)×βr”(C), 0≤α≤1. Otherwise, βr(C) = βr’(C) if r belongs to RS1,
or βr(C) = βr”(C) if r belongs to RS2;

3. Let C, C’ and C” be any coordinates such that C∈X'∩X”, C’∈X'−X”
and C”∈ X”−X'. And let βr, βr’ and βr” be the membership probability
functions of r at X*, X' and X”in RS, RS1 and RS2 respectively. If r be-
longs to both RS1 and RS2, then βr(C) = α×βr’(C) + (1−α)×βr”(C),
βr(C’) = βr’(C’) and βr(C”) = βr”(C”). Otherwise, βr(C) = βr’(C), βr(C’)
= βr’(C’) and βr(C”) = 0 if r belongs to RS1, or βr(C) = βr”(C), βr(C’) =
0 and βr(C”) = βr”(C”) if r belongs to RS2.

Split. A resource space RS can be split into two resource spaces RS1 and
RS2 that store the same type of resources as RS and have |RS|−1 common
axes by splitting an axis X into two: X’ and X″, such that X=X’∪X″. For
any resource r, we have:

1. r belongs to both RS1 and RS2, if and only if r belongs to RS;
2. For any axis Xi (1≤i≤n) in RS1 and any coordinate C at Xi, let βr and

βr’ be the membership probability functions of r at Xi in RS and RS1
respectively, then βr(C)= βr’(C).

9.4 Integrity Constraints under Probability

Integrity constraints play an important role in maintaining consistency of
the Resource Space Model. In the probabilistic Resource Space Model, the
meaning of some constraint rules is changed and new rules should be taken
into consideration.

9.4.1 Key in Probabilistic Resource Space Model

As a coordinate system, the Resource Space Model supports accurate re-
source location by giving coordinates. However, it is sometimes unneces-
sary and even arduous to specify all the coordinates to identify a point, es-
pecially for high-dimensional resource spaces. The key of the Resource
Space Model is to efficiently locate resources.

9.4 Integrity Constraints under Probability 215

Definition 9.5 Let CK be a subset of axis set {X1, X2, …, Xn}, p1 and p2 be
any two non-null points of resource space RS(X1, X2, …, Xn). CK is called a
candidate key of resource space RS if p1.Xi=p2.Xi, Xi∈{X1, X2, …, Xn} is
implied by p1.Xi=p2.Xi, Xi∈CK.

Note that there are two concepts in above definition: null point and non-
null point. For a given point p, if there exists at least one resource belong-
ing to p, then p is a non-null point, otherwise is a null point. In the Prob-
abilistic Resource Space Model, each resource has a membership probabil-
ity distribution on all of the points. The null point and non-null point
concepts make no sense any more. The key in the probabilistic resource
space is defined as follows:

Definition 9.6. Let CK be a subset of axis set {X1, X2, …, Xn}and p1, p2 be
any two points of resource space RS(X1, X2, …, Xn) such that p1.Xi=p2.Xi,
Xi∈CK. CK is called a candidate key of resource space RS if CK satisfies:
if there exists an axis Xj such that Xj∈{X1, X2, …, Xn}−CK and p1.Xj≠p2.Xj,
then Prob(r1∈R(p1) ∧ r2∈R(p2))=0 holds for any two resources r1 and r2.

 The above definition implies a kind of resource dependency: if the event
r1 belonging to p1 occurs, the probability of r2 belonging to p2 is 0, i.e.
Prob(r2∈R(p2) | r1∈R(p1)) = 0.

Most previous probabilistic relational data models manage entities one
by one and seldom concern the relationship between entities. They usually
assume that the uncertainty of one entity is independent of another entity.
The Probabilistic Resource Space Model should consider some depend-
ency between resources. Theorem 9.4 presents a situation where the prob-
abilistic events of two resources should not be supposed to be independent
of each other.

Theorem 9.4. Let CK be a candidate key of 3NF resource space RS(X1,
X2, …, Xn) and CK’ be a subset of {X1, X2, …, Xn} such that CK⊂CK’. Let
p1 and p2 be two points in RS such that p1.Xi=p2.Xi (Xi∈CK) and p1.Xj≠p2.Xj
(Xj∈CK’−CK). For any two resources r1 and r2, the events
r1∈

1' .

()
X CK p X C

R C
∈ ∧ =
I and r2∈

2' .

()
X CK p X C

R C
∈ ∧ =
I are not independent of

each other, and Prob(r1∈
1' .

()
X CK p X C

R C
∈ ∧ =
I ∧ r2∈

2' .

()
X CK p X C

R C
∈ ∧ =
I) =

0.

216 Chapter 9 Probabilistic Resource Space Model

Proof. Suppose that both Prob(r1∈
1' .

()
X CK p X C

R C
∈ ∧ =
I) ≠ 0 and

Prob(r2∈
2' .

()
X CK p X C

R C
∈ ∧ =
I) ≠ 0 hold. Since RS satisfies 3NF, both

1' .

()
X CK p X C

R C
∈ ∧ =
I =

1' . .

()
X CK p X p X

R p
∈ ∧ =
U and

2' .

()
X CK p X C

R C
∈ ∧ =
I =

2' . '.

(')
X CK p X p X

R p
∈ ∧ =

U hold. If Prob(r1∈
1' .

()
X CK p X C

R C
∈ ∧ =
I ∧

r2∈
2' .

()
X CK p X C

R C
∈ ∧ =
I) ≠ 0, then there must exist at least two points p3 and

p4 such that p1.Xi=p3.Xi (Xi∈CK’), p2.Xi=p4.Xi (Xi∈CK’) and Prob(r1∈R(p3)
∧ r2∈R(p4)) ≠ 0 hold. This contradicts to the fact that CK is a candidate
key of RS. So Prob(r1∈

1' .

()
X CK p X C

R C
∈ ∧ =
I ∧ r2∈

2' .

()
X CK p X C

R C
∈ ∧ =
I) = 0

holds. 

9.4.2 Integrity Constraints in Probabilistic Resource Space
Model

Modification of resources may result in inconsistency in resource spaces.
Entity integrity constraint, membership integrity constraint, reference in-
tegrity constraint and user-defined integrity constraint have been proposed
in the classical Resource Space Model. More integrity constraint rules are
needed in the probabilistic Resource Space Model.

Rule 1 For resource space RS(X1, X2, …, Xn), let βri be the membership
probabilistic function of resource r at axis Xi, (1≤i≤n). For any coordinate
C at Xi, 0≤ βri(C) ≤1 must hold. If any two coordinates at Xi are independ-
ent of each other, then ri

' i

(')
C X

Cβ
∈
∑ ≤ 1 holds.

 Since βri(C) represents the probability of resource r belonging to coordi-
nate C, it is natural to require 0≤βri(C)≤1. For axis Xi, R(Xi) =

'

(')
C X

R C
∈
U

holds. If any two coordinates at Xi are independent of each other,
Prob(r∈R(Xi)) = ri

' i

(')
C X

Cβ
∈
∑ . So ri

' i

(')
C X

Cβ
∈
∑ ≤ 1 must hold. The inser-

tion and modification of resources and merge operations between resource

9.4 Integrity Constraints under Probability 217

spaces may violate rule 1.

Rule 2 For resource space RS(X1, X2, …, Xn) and resource r, let βri and βrj
be the membership probabilistic functions of resource r at Xi and Xj (1≤i,
j≤n) respectively. If Xi can be finely classified by Xj and any two coordi-
nates at Xi are independent of each other, then ri

i

()
C X

Cβ
∈
∑ ≤ rj

' j
(')

C X
Cβ

∈
∑

must hold. If Xi is orthogonal with Xj, i.e. Xi⊥Xj holds, then ri

i

()
C X

Cβ
∈
∑

= rj
' j

(')
C X

Cβ
∈
∑ must hold.

 The above rule holds because of the following two points:

1. Prob(r∈R(Xi)) ≤ Prob(r∈R(Xj)) is implied by R(Xi)⊆R(Xj), which is
implied by Xi/Xj. And both Prob(r∈R(Xi))= ri

i

()
C X

Cβ
∈
∑ and

Prob(r∈R(Xj)) = rj
' j

(')
C X

Cβ
∈
∑ hold since R(Xi) =

' i

(')
C X

R C
∈
U and R(Xj)

=
' j

(')
C X

R C
∈
U . Thus ri

i

()
C X

Cβ
∈
∑ ≤ rj

' j
(')

C X
Cβ

∈
∑ .

2. If Xi ⊥ Xj, both Xi/Xj and Xj/Xi hold, then both ri

i

()
C X

Cβ
∈
∑

≤ rj
' j

(')
C X

Cβ
∈
∑ and ri

i

()
C X

Cβ
∈
∑ ≥ rj

' j
(')

C X
Cβ

∈
∑ hold. So ri

i

()
C X

Cβ
∈
∑

= rj
' j

(')
C X

Cβ
∈
∑ holds.

Rule 3 For any 3NF resource space RS and resource r, let βri be the mem-
bership probabilistic function of resource r at Xi of RS. For any coordinate
C at Xi and point p in RS,

. i=
(())

p X C
Prob r R p∈∑ = βri(C) must hold.

 According to theorem 9.3, in any 3NF resource space, the probability of r
belonging to coordinate C can be partitioned into all the points having pro-
jection C at axis Xi, i.e. Prob(r∈R(C)) =

. i=
(())

p X C
Prob r R p∈∑ holds. Rule

3 should be checked to make sure the maintenance of theorem 9.3 when

218 Chapter 9 Probabilistic Resource Space Model

inserting or updating resources.

Rule 4 Let RS1, RS2 and RS be three resource spaces such that
RS1⋅RS2⇒RS.

1. For any resource r in RS and any non-common axis Xi in RS1, let βri
and βri’ be the membership probabilistic functions of r at Xi in re-
source spaces RS and RS1 respectively. If there does not exist any
common axis Xj of RS1 and RS2 such that Xj⊥Xi holds, then for any
coordinate C at Xi, βri(C) = βri’(C) must hold;

2. For any resource r in RS and any non-common axis Xi in RS2, let βri
and βri’ be the membership probabilistic functions of r at Xi in re-
source spaces RS and RS2 respectively. If there does not exist any
common axis Xj of RS1 and RS2 such that Xj⊥Xi holds, then for any
coordinate C at Xi, βri(C) = βri’(C) must hold;

3. For any resource r in RS and any common axis Xt of RS1 and RS2,
let βrt, βrt’ and βrt” be the membership probabilistic functions of r at
Xt in resource spaces RS, RS1 and RS2 respectively. For any coordi-
nate C at Xt, min{βrt’(C), βrt”(C)} ≤ βrt(C) ≤ max{βrt’(C), βrt”(C)}
must hold.

 Resource space RS results from the join operation on RS1 and RS2, and
rule 4 maintains the dependency of RS on RS1 and RS2. Thus, rule 4
should be checked when insertion, deletion and modification operations
are executed.

Rule 5 Let RS1(X1, …, Xn-1, X'), RS2(X1, …, Xn-1, X”) and RS(X1, …, Xn-1,
X*) be three resource spaces such that RS1∪RS2⇒RS and X*=X'∪X”.

1. For any resource r, let βr, βr’ and βr” be the membership probabilis-
tic functions of r at X*, X' and X” in resource spaces RS, RS1 and
RS2 respectively. For any coordinate C at X*, if C is at both RS1 and
RS2, min{βr’(C), βr”(C)} ≤ βr(C) ≤ max{βr’(C), βr”(C)} must hold;
otherwise, βr(C) = βr’(C) must hold if C is at RS1, or βr(C) = βr”(C)
must hold if C is at RS2; and,

2. For any axis Xi (1≤i≤n−1) and resource r, let βri, βri’ and βri” be the
membership probabilistic functions of r at Xi in resource spaces RS,
RS1 and RS2 respectively. For any coordinate C at Xi, min{βri’(C),
βri”(C)} ≤ βri(C) ≤ max{βri’(C), βri”(C)} must hold.

 As the result of merge operation on RS1 and RS2, RS should satisfy rule
5. Thus, this rule should be checked when insertion, deletion and modi-
fication operations are executed.

9.5 Relevant Works 219

9.5 Relevant Works

Much attention has been paid to modeling uncertain data in the context of
relational model and XML (eXtensible Markup Language).

Researches on modeling relational data fall into two categories depend-
ing on whether the resulting models satisfy the first normal form of the
classical relational model. Models satisfying 1NF usually assume that the
existence of an object is uncertain and associate probabilities with a whole
tuple to indicate this type of uncertainty (Cavallo and Pittarelli, 1987; Dey
and Sarkar, 1996). Notable works using non-1NF usually assume that the
existence of an object is certain, but the attribute values of an object are
uncertain (Barbara et al, 1992; Fuhr and Rolleke, 1997). So they associate
probabilities with attributes of a tuple. The above two types of probabilis-
tic relational models have limitations. It is very difficult to represent the
probabilities of attribute values of an object for probabilistic relational
models satisfying 1NF. It can lead to information loss or combinatorial ex-
plosion of tuples to specify attribute value probabilities using tuple prob-
abilities. On the other hand, non-1NF probabilistic relational models are
often accompanied by complicated algebras and querying mechanisms.
ProbView is an attempt to overcome these two types of limitations
(Lakshmanan et al, 1997). ProbView firstly transforms non-1NF data to its
equivalent annotated 1NF patterns, and then all manipulating and querying
operations in ProbView are applied to these equivalent 1NF data.

Other researches on this topic also concern query answering from the
view of probability and query evaluation on probabilistic database (Dalvi
and Suciu, 2005; Dalvi and Suciu, 2004). A system for managing data, ac-
curacy and lineage in an integral manner is introduced (Widom, 2005).

ProTDB is a XML model to manage probabilistic data in XML, in
which stochastic events are the existence of nodes of XML data (Nierman
and Jagadish, 2002). A framework is proposed to acquire, maintain and
query XML documents with incomplete information, in which order in
documents and DTDs is ignored (Abiteboul et al, 2006). A full complexity
analysis for managing probabilistic XML data is discussed (Senellart and
Abiteboul, 2007). A probabilistic XML approach is proposed to resolve
conflicts during data integration, and the order in documents and DTDs
plays an important role (Keulen et al, 2005).

220 Chapter 9 Probabilistic Resource Space Model

9.6 Summary

A Probabilistic Resource Space Model deals with uncertainty in resource
operation. It enables membership probability distributions of resources on
the classification hierarchies of a resource space to be effectively specified,
managed and queried. Operations of the Probabilistic Resource Space
Model pay more attention to dealing with membership probability func-
tions of resources in resource spaces. To guarantee the correctness of op-
erations, the normal forms of the Probabilistic Resource Space Model are
defined. The integrity constraints concerning membership probability
functions are to maintain the consistency of probabilistic resource spaces.
The Probabilistic Resource Space Model can be regarded as a more gen-
eral form of the Resource Space Model.

References

1. Abiteboul, S., Hull, R., and Vianu, V., 1995. Foundations of Data-
bases. Addison-Wesley.

2. Abiteboul, S. et al., 2006. Representing and Querying XML with
Incomplete Information. ACM Transactions on Database Systems,
31 (1), 208-254.

3. Agrawal, R., Deshpande, P., Gupta, A., Naughton, J., F., Rama-
krishnan, R., and Sarawagi, S., 1996. On the Computation of Mul-
tidimensional Aggregates. In Proc. VLDB, 506-521.

4. Agarwal, R. P., 2000. Difference Equations and Inequalities (Sec-
ond Edition). CRC.

5. Aho, A. V., Ullman, J. D. and Hopcroft, J. E., 1983. Data Structures
and Algorithms (1st Edition). Addison Wesley.

6. Alashqur, A.M. et al., 1989. OQL: A Query Language for Manipu-
lating Object-oriented Databases. In Proc. VLDB, 433-442.

7. Androutsellis-Theotokis, S., Spinellis, D., 2004. A Survey of Peer-
to-Peer Content Distribution Technologies. ACM Computing Sur-
veys 36 (4), 335-371.

8. ANSI, 1986. The Database Language SQL. Document ANSI
X3.315.

9. Baase, S. and Gelder, A. V., 2000. Computer Algorithms—
Introduction to Design and Analysis (3rd Edition). Addison Wesley.

10. Bachman, C., 1974. The Data Structure Set Model. In Proc. VLDB,
43-76.

11. Bailey, N.T.J., 1975. The Mathematical Theory of Infectious Dis-
eases and Its Applications. Hafner Press.

12. Barbara, D. et al., 1992. The Management of Probabilistic Data.
IEEE Transactions on Knowledge and Data Engineering, 4 (5),
437-502.

13. Berners-Lee, T., Hendler, J., and Lassila, O., 2001. Semantic Web.
Scientific American, 284 (5), 34-43.

14. Berry, M.W., et al., 1999. Matrices, Vector Spaces, and Information
Retrieval. Society for Industrial and Applied Mathematics Review,
41 (2), 335-362.

15. Boag, S. et al., 2005. XQuery1.0: An XML Query Language.

222 References

World Wide Web Consortium, http://www.w3.org/TR/xquery.
16. Bollobás, B., 1998. Modern Graph Theory. Springer-Verlag.
17. Boyce, R. et al., 1975. Specifying Queries as Relational Expres-

sions. Communications of the ACM, 18 (11), 621-628.
18. Bray, T. et al., 1998. Extensible Markup Language (XML) 1.0.

W3C Recommendation, www.w3.org/TR/REC-xml/.
19. Briman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Min-

sky, Y., 1999. Bimodal Multicast. ACM Transactions of Computer
Systems, 17 (2), 41-88.

20. Cabibbo, L. and Torlone, R., 1997. Querying multidimensional da-
tabases. In Sixth Int. Workshop on Database Programming Lan-
guages, 253–269.

21. Cavallo, R. and Pittarelli, M., 1987. The Theory of Probabilistic
Databases. In Proc. VLDB, 71-81.

22. Chamberlin, D. and Boyce, R., 1976. SEQUEL: A Structured Eng-
lish Query Language. In Proc. VLDB, 249-264.

23. Chamberlin, D. et al., 1976. SEQUEL 2: A Unified Approach to
Data Definition, Manipulation and Control. IBM Journal of Re-
search and Development, 20 (6), 560-575.

24. Chen, P., 1976. The Entity-Relationship Model－Toward a Unified
View of Data. ACM Transactions on Database Systems, 1 (1), 9-36.

25. Clarke, I., Sandberg, O., Wiley, B., and Hong, T., 2000. Freenet: A
Distributed Anonymous Information Storage and Retrieval Sys-
tem. In Proc. the Workshop on Design Issues in Anonymity and
Unobservability, 6–66.

26. Codd, E.F., 1970. A Relational Model of Data for Large Shared
Data Banks. Communications of the ACM, 13 (6), 377-387.

27. Codd, E.F., 1971a. Normalized Database Structure: A Brief Tuto-
rial. ACM SIGFIDET Workshop on Data Description, Access, and
Control, 1-18.

28. Codd, E.F., 1971b. A Data Base Sublanguage Founded on the Rela-
tional Calculus. ACM SIGFIDET Workshop on Data Description,
Access and Control, 35-61.

29. Codd, E.F., 1972. Relational Completeness of Data Base Sublan-
guages. Prentice Hall and IBM Research Report RJ 987, Database
Systems: 65-98.

30. Codd, E.F. et al., 1996. Providing OLAP (On Line Analytical Proc-
essing) to User-Analysts: An IT Mandate. Arbor Software White
Paper, 1-12.

31. Cohn, H. and Umans, C., 2003. A Group-theoretic Approach to
Fast Matrix Multiplication. In Proc. FOCS, 438-449.

References 223

32. Dalvi, N. and Suciu, D., 2004. Efficient Query Evaluation on Prob-
abilistic Databases. In Proc. VLDB, 864-875.

33. Dalvi, N. and Suciu, D., 2005. Answering Queries from Statistics
and Probabilistic Views. In Proc. VLDB, 805-816.

34. Date, C.J., 1989. A Note on the Relational Calculus. ACM
SIGMOD Record, 18 (4), 12-16.

35. Decker, S. et al., 2000. The Semantic Web: The Roles of XML and
RDF. IEEE Internet Computing, 4 (5), 63-74.

36. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., 1987.
Epidemic Algorithms for Replicated Database Maintenance. In
Proc. The 6th ACM Symposium, Principles of Distributed Comput-
ing, 1-12.

37. Demuth, H. B., 1956. Electronic Data Sorting. Ph.D. thesis, Stan-
ford University.

38. Dey, D. and Sarkar, S., 1996. A Probabilistic Relational Model and
Algebra. ACM Transactions on Database Systems, 21 (3), 339-369.

39. Duda, R. and Hart, P., 1973. Pattern Classification and Scene
Analysis. New York: John Wiley & Sons.

40. Eugene, T. S. and Zhang, Ng, H., 2001. Towards Global Network
Positioning. In Proc. ACM SIGCOMM Internet Measurement
Workshop, 25-29.

41. Eugster, P.T., Guerraoui, R., Handurukande, S., Kermarrec, A.M.,
Kouznetsov, P., 2001. Lightweight Probabilistic Broadcast. In Proc.
International Conference of Dependable Systems and Networks,
443-452.

42. Eugster, P.T., Guerraoui, R., 2002. Probabilistic Multicast. In Proc.
International Conference of Dependable Systems and Networks,
313-322.

43. Ford, L. R. and Johnson, S. M., 1959. A Tournament Problem.
AMM 66 (5), 387-389.

44. Foster, I., 2000. Internet Computing and the Emerging Grid.
http://www-fp.mcs.anl.gov/~foster/.

45. Francis, P., 2000. Yoid: Extending the Internet Multicast Architec-
ture. Available at www.aciri.org/yoid/docs/index.html.

46. Fuhr, N. and Rolleke, T., 1997. A Probabilistic Relational Algebra
for the Integration of Information Retrieval and Database Systems.
ACM Transactions on Information Systems, 15 (1), 32-66.

47. Gaede, V. and Gnther, O., 1998. Multidimensional Access Meth-
ods. ACM Computing Surveys, 30 (2), 170-231.

48. Gkantsidis, C., Mihail, M., and Saberi, A., 2004. Random Walks in
Peer-to-Peer Networks. In Proc. the IEEE INFOCOM, 120-130.

49. Graefe, C.J., 1993. Query Evaluation Techniques for Large Data-

224 References

bases. ACM Computing Surveys, 25 (2), 73–170.
50. Graham, R. L., Knuth, D. E. and Patashnik, O., 1989. Concrete

Mathematics: A Foundation for Computer Science (2nd Edition).
Addison Wesley.

51. Gray, J. et al., 1996. Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-tab, and Sub-totals. In Proc. IEEE
Int. Conference on Data Engineering, 152-159.

52. Guttman, A., 1984. R-Trees: A Dynamic Index Structure for Spatial
Searching. In Proc. SIGMOD, 47-57.

53. Gyssens, M. and Lakshmanan, L.V.S., 1997. A Foundation for
Multi-Dimensional Databases, In Proc. SIGMOD, 106-115.

54. Gyssens, M., Paredaens, J., Bussche, J., and Gucht, D., 1994. A
Graph-Oriented Object Database Model. IEEE Transactions on
Knowledge and Data Engineering, 6 (4), 572-586.

55. Han, J. and Kambr, M., 2000. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers.

56. Heflin, J., and Hendler, J., 2001. A Portrait of the Semantic Web in
Action. IEEE Intelligent Systems, 16 (2), 54-59.

57. Hendler, J., 2001. Agents and the Semantic Web. IEEE Intelligent
Systems, 16 (2), 30-37.

58. Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., and
Stockinger, K., 2000. Data Management in an International Data
Grid Project. In Proc. 1st IEEE/ACM International Workshop on
Grid Computing, 77-90.

59. Hull, R., and King, R., 1987. Semantic Database Modeling: Survey,
Applications, and Research Issues. ACM Computing Surveys, 19
(3), 201-260.

60. Iamnitchi, A., Ripeanu, M., Foster, I., 2002. Locating Data in
(Small-World?) P2P Scientific Collaborations. In Proc. The 1st In-
ternational Workshop of Peer-to-Peer Systems, 85-93.

61. Ibaraki, T. and Kameda, T., 1984. On the Optimal Nesting Order
for Computing N-relational Joins. ACM Transactions on Database
Systems, 9 (3), 482-502.

62. Inmon, W. H., 2002. Buding the Data Warehouse. John Wiley &
Sons.

63. James, M., 1985. Classification Algorithms. New York: John Wiley
& Sons.

64. Kalfoglou, Y. and Schorlemmer, M., 2003. Ontology Mapping: the
State of the Art. The Knowledge Engineering Review, 18 (1), 1-31.

65. Kermarrec, A.M., Massoulié, L. and Ganesh, A.J., 2003. Probabil-
istic Reliable Dissemination in Large-Scale Systems. IEEE Trans-
actions on Parallel and Distributed Systems, 14 (3), 248-258.

References 225

66. Keulen, M. et al., 2005. A Probabilistic XML Approach to Data In-
tegration. In Proc. ICDE, 459-470.

67. Kim, W., 1990. Introduction to Object-oriented Databases. MIT
Press, Cambridge.

68. Kimball, R., 1996. The Data Warehouse Toolkit. John Wiley &
Sons.

69. Klein, M., 2001. XML, RDF, and Relatives. IEEE Internet Comput-
ing, 16 (2), 26-28.

70. Klug, A., 1982. Equivalence of Relational Algebra and Relational
Calculus Query Languages Having Aggregate Functions. Journal of
the ACM, 29 (3), 699-717.

71. Knuth, D. E., 1997a. The Art of Computer Programming, Volume
1: Fundamental Algorithms (Third Edition). Addison-Wesley.

72. Knuth, D. E., 1997b. The Art of Computer Programming, Volume
2: Semi-Numerical Algorithms (Third Edition). Addison-Wesley.

73. Knuth, D. E., 1997c. The Art of Computer Programming, Volume
3: Sorting and Searching (Third Edition). Addison-Wesley.

74. Lakshmanan, L.V.S. et al., 1997. ProbView: A Flexible Probabilis-
tic Database System. ACM Transactions on Database Systems, 22
(3), 419-469.

75. Leland, W.E., et al., 1994. On the Self-Similar Nature of Ethernet
Traffic. IEEE/ACM Transactions on Networking, 2 (1), 1-15.

76. Levene, M., and Loizou, G., 1995. A Graph-based Data Model and
its Ramifications. IEEE Transactions on Knowledge and Data En-
gineering, 7 (5), 809-823.

77. Levene, M., and Poulovassilis, A., 1990. The Hypernode Model
and its Associated Query Language. In Proc. Jerusalem Conference
on Information Technology, 520-530.

78. Levitin, V., 2003. Introduction to the Design & Analysis of Algo-
rithms. Addison Wesley.

79. Lin, M.J. and Marzullo, K., 1999. Directional Gossip: Gossip in a
Wide Area Network. In Proc. European Dependable Computing
Conference, LNCS 1667, 364-379.

80. Mack, R., Ravin, Y. and Byrd, R. J., 2001. Knowledge Portals and
the Emerging Knowledge Workplace. IBM Systems Journal, 40 (4),
925-955.

81. Mairson, H. G., 1977. Some New Upper Bounds on the Generation
of Prime Numbers. Communications of the ACM, 20 (9), 664-669.

82. McHraith, S.A., Son, T.C., and Zeng, H., 2001. Semantic Web Ser-
vices. IEEE Intelligent Systems, 16(2), 46-53.

83. Mitchell, M., 1996. An Introduction to Genetic Algorithms. Cam-
bridge, MA: MIT Press.

226 References

84. Mok, W.Y., 2002. A Comparative Study of Various Nested Normal
Forms. IEEE Transactions on Knowledge and Data Engineering, 14
(2), 369-385.

85. Nierman, A. and Jagadish, H. V., 2002. ProTDB: Probabilistic Data
in XML. In Pro. VLDB, 646-657.

86. Özsu, M.T. and Valduriez, P., 1999. Principles of Distributed Data-
base Systems (2nd edition). Prentice-Hall.

87. Pawlak, Z., 1991. Rough Sets, Theoretical Aspects of Reasoning
about Data. Boston: Kluwer Academic Publishers.

88. Pittel, B., 1987. On Spreading a Rumor. SIAM Journal of Applied
Mathematics, 47:213-223.

89. Pons, A. P., 2005. Improving the Performance of Client Web Ob-
ject Retrieval. Journal of Systems and Software, 74(3), 303-311.

90. Pons, A. P., 2006. Object Pre-Fetching using Semantic Links. ACM
SIGMIS Database, 37 (1), 97-109.

91. Poulovassilis, A., and Levene, M., 1994. A Nested-Graph Model
for the Representation and Manipulation of Complex Objects.
ACM Transactions on Information Systems, 12 (1), 35-68.

92. Qian, G. et al., 2006. Dynamic Indexing for Multidimensional Non-
Ordered Discrete Data Spaces using a Data-Partitioning Approach.
ACM Transactions on Database Systems, 31 (2), 439-484.

93. Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann.

94. Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S.,
2001. A Scalable Content-Addressable Network. In Proc. Confer-
ence on Applications, Technologies, Architectures, and Protocols
for Computer Communications, 161-172.

95. Renesse, R.V., Birman, K.P. and Vogels, W., 2001. Astrolabe: A
Robust and Scalable Technology for Distributed Systems Monitor-
ing, Management, and Data Mining. ACM Transactions on Com-
puter Systems, 21 (2), 164-206.

96. Renesse, R.V., Minsky, Y, and Hayden, M., 1998. A Gossip-Style
Failure Detection Service. In Proc. IFIP International Conference,
Distributed Systems and Platforms and Open Distributed Process-
ing, 55-70.

97. Ripley, B.D., 1996. Pattern Recognition and Neural Networks.
Cambridge, UK: Cambridge University Press.

98. Robert, R. S., 1979. Set Theory and Logic. Courier Dover Publica-
tions.

99. Robinson, S., 2005. Toward an Optimal Algorithm for Matrix Mul-
tiplication. SIAM News, 38 (9), 1-3.

100. Rowstron, A. and Druschel, P., 2001. Pastry: Scalable, Distributed

References 227

Object Location and Routing for Large-scale Peer-to-peer Sys-
tems. In Proc. ACM/IFIP/USENIX International Middleware Con-
ference, 329-350.

101. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,
W., 1991. Object-Oriented Modeling and Design. Prentice-Hall.

102. Salton, G., 1989. Automatic Text Processing: the Transformation,
Analysis, and Retrieval of Information by Computer. Addison-
Wesley.

103. Salton, G., 1991. Developments in Automatic Text Retrieval. Sci-
ence, 253 (8), 974-979.

104. Sarshar, N. et al., 2004. Percolation Search in Power Law Net-
works: Making Unstructured Peer-to-Peer Networks Scalable. In
Proc. 4th International Conference on Peer-to-Peer Computing, 2-9.

105. Schlosser, M. et al., 2002. A Scalable and Ontology-Based P2P In-
frastructure for Semantic Web Services. In Proc. 2nd International
Conference on Peer-to-Peer Computing, 104-111.

106. Senellart, P. and Abiteboul, S., 2007. On the Complexity of Manag-
ing Probabilistic XML Data. In Proc. PODS, 283-292.

107. Shaw, G.M. and Zdonik, S.B., 1990. A Query Algebra for Object-
Oriented Databases. In Proc. 6th International Conference on Data
Engineering, 154-162.

108. Shipman, D., 1981. The Functional Data Model and the Data Lan-
guage DAPLEX. ACM Transactions on Database Systems, 6 (1),
140-173.

109. Strang, G., 1991. Calculus. Wellesley-Cambridge.
110. Strassen, V., 1969. Gaussian Elimination is not Optimal. Numerical

Mathematics, 14 (13), 354–356.
111. Tam, Y., 1998. Datacube: Its Implementation and Application in

OLAP Mining. MSc. Thesis, Simon Fraser University, Canada.
112. Ullman, J. D., 1982. Principles of Database Systems (Second Edi-

tion). Computer Science Press.
113. Ullman, J. D., 1988. Principles of Database and Knowledge-Base

Systems. Computer Science Press.
114. Vogels, W., Renesse, R.V., Birman, K., 2003. The Power of Epi-

demics: Robust Communication for Large-Scale Distributed Sys-
tems. ACM SIGCOMM Computer Communications Review, 33
(1), 131-135.

115. Widom, J., 2005. Trio: A System for Integrated Management of
Data, Accuracy, and Lineage. In Proc. 2nd Biennial Conference on
Innovative Data Systems Research, 262-276.

116. William, K., 1983. A Simple Guide to Five Normal Forms in Rela-
tional Database Theory. Communications of the ACM, 26 (2), 120-

228 References

125.
117. Xu, Z. and Zhang, Z., 2002. Building Low-maintenance Express-

ways for P2P Systems. Technical Report HPL-2002-41, HP Labo-
ratories Palo Alto.

118. Zaniolo, C., 1983. The Database Language GEM. In Proc.
SIGMOD, 286-295.

119. Zhuge, H., 1998. Inheritance Rules for Flexible Model Retrieval.
Decision Support Systems, 22 (4), 383-394.

120. Zhuge, H., 2003. Active e-Document Framework ADF: Model and
Platform. Information and Management, 41 (1), 87-97.

121. Zhuge, H., 2004a. Resource Space Grid: Model, Method and Plat-
form. Concurrency and Computation: Practice and Experience, 16
(14), 1385-1413.

122. Zhuge, H., 2004b. Resource Space Model, Its Design Method and
Applications. Journal of Systems and Software, 72 (1), 71-81.

123. Zhuge, H., 2004c. Fuzzy Resource Space Model and Platform.
Journal of Systems and Software, 73 (3), 389-396.

124. Zhuge, H., 2004d. The Knowledge Grid. World Scientific.
125. Zhuge, H. et al., 2004e. Semantic Link Network Builder and Intel-

ligent Semantic Browser. Concurrency and Computation: Practice
& Experience, 16 (14), 1453-1476.

126. Zhuge, H., 2005a. Semantic Grid: Scientific Issues, Infrastructure,
and Methodology. Communications of the ACM, 48 (4), 117-119.

127. Zhuge, H., 2005b. The Future Interconnection Environment. IEEE
Computer, 38 (4), 27-33.

128. Zhuge, H. et al, 2005c. Extended Resource Space Model. Future
Generation Computer Systems, 21 (1), 189-198.

129. Zhuge, H., Liu, J., Feng, L., Sun, X. and He, C., 2005d. Query
Routing in a Peer-to-Peer Semantic Link Network. Computational
Intelligence, 21 (2), 197-216.

130. Zhuge, H. and Yao, E., 2006. Completeness of Query Operations
on Resource Spaces. Keynote at SKG2006, In Proc. 2nd Interna-
tional Conference on Semantics, Knowledge and Grid, 3-8.

131. Zhuge, H., Shi, P., Xing, P. and He, C., 2006. Transformation from
OWL Description to Resource Space Model. In Proc. The 1st Asian
Semantic Web Conference 2006, 4-23.

132. Zhuge, H., 2007. Autonomous Semantic Link Networking Model
for the Knowledge Grid. Concurrency and Computation: Practice
and Experience, 7 (19), 1065-1085.

133. Zhuge, H., Ding, L., and Li, X., 2007. Networking Scientific Re-
sources in the Knowledge Grid Environment. Concurrency and
Computation: Practice and Experience, 7 (19), 1087-1113.

References 229

134. Zhuge, H. and Li, X., 2007a. RSM-Based Gossip on P2P Network.
Keynote at ICA3PP, LNCS 4494, 1-12.

135. Zhuge, H. and Li, X., 2007b. Peer-to-Peer in Metric Space and Se-
mantic Space. IEEE Transactions on Knowledge and Data Engi-
neering, 6 (19), 759-771.

Index

B

best distribution of coordinates, 127

C

CAN, 163, 164, 165, 166, 172
Cartesian space, 164, 165
characteristics of expressiveness, 96
classification, xi, 1, 8, 17, 26, 27,

32, 83, 144, 152, 186, 189, 206,
229, 230

community, 38, 46, 164, 185, 186,
187, 189, 191, 192, 193, 194,
196, 197, 198

comparison between expressiveness,
94, 95

completeness of query languages, 86
computation complexity, 121, 122
content-aware coordinate D

selection, 172, 173
critical dimension, 133, 134, 135,

136, 137

D

distribution of coordinates on axes,
127

domain ontology, 11, 29, 32, 38, 39,
40, 56, 63, 90, 106, 213

dynamic, 56, 82, 166, 183, 189, 190

F

file system, 2, 3, 5, 6, 23

G

gossip, 183, 184, 186, 187, 194,
195, 196, 197, 198, 200, 202,
204, 205, 206

Grid computing, 55

H

heart-beat style refreshment, 174,
175

hierarchy, 8, 26, 32, 34, 58, 63, 66,
73, 75, 76, 77, 78, 79, 80, 81,
141, 142, 143, 144, 149, 151,
152, 156, 157, 186, 189, 208, 209

I

integrity constraints under
probability, 219

K

Knowledge Grid, 11, 44, 51, 57,
234, 235

knowledge representation and
logics, 55

L

load balance, 172, 173
long link, 176, 177, 178, 182, 189
lower bound, 121, 122, 123, 124,

125, 128, 129, 181, 182

232 Index

M

membership probability function,
208, 209, 211, 216, 217, 218, 224

N

normal form, 10, 21, 24, 26, 32, 49,
50, 56, 57, 60, 61, 65, 67, 68, 82,
84, 85, 88, 92, 93, 114, 115, 116,
118, 141, 210, 211, 223, 224

normal forms of probabilistic
resource space, 210

normal forms of Semantic Link
Network, 60

O

operations on resource class
hierarchy, 77

orthogonality, 35, 38

P

P2P, 46, 51, 163, 164, 165, 166,
167, 168, 171, 172, 174, 175,
176, 179, 180, 182

partition space, 166
partition tree, 185, 186, 187, 193,

195
point query, 213
power-law, 190, 197, 198, 199, 200,

203, 204
probabilistic relational model, 224
Probabilistic Resource Space Model,

207, 212, 216, 219, 220, 221, 224

Q

query language, xi, 2, 11, 44, 52, 85,
86, 87, 93, 94, 97, 99, 101, 102,
119

quotient resource space, 68
quotient semantic link network, 68,

69

R

random, 121, 152, 160, 165, 171,
172, 183, 184, 190, 191, 192,
195, 196, 197, 198, 199, 200,
201, 202, 204

reduction algorithm, 101, 114
relational algebra, 3, 85, 101
relational calculus, 85, 101, 111,

113, 117
relational model to resource space,

117
resource analysis, 32
resource operation language, 85, 97
resource query, 214
resource space algebra, 102, 112,

113, 118
resource space calculus, 109, 112,

113, 117

S

searching complexity, 121, 124, 133
Semantic Link Network, xi, 42, 43,

44, 45, 46, 51, 52, 55, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 80, 82, 83, 84,
234, 235

semantic overlay, 55, 61, 62
Semantic Web, 55, 56, 227, 229,

230, 231, 233
static, 189, 190
structured P2P RSM, 165, 166, 167,

168, 171, 172, 175, 176, 179
structured query language, 86, 101

T

topological properties, 69

U

unstructured, 53, 163, 183, 198, 206
upper bound, 121, 122, 123, 124,

131, 150

Index 233

V

verification of completeness of
operations, 91

W

Web Resource Space Model, xi, 1

World Wide Web, 3, 5, 6, 20, 55,
228

worst distribution of coordinates,
129

	front_matter_web resource space model.pdf
	web resource space model-new.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 841.997]
>> setpagedevice

